A MULTIPLICITY RESULT FOR A GENERALIZED PENDULUM EQUATION

Boris Rudolf
Department of Mathematics, Faculty of Electrical engineering STU,
81219 Bratislava, Slovakia

We consider the second order differential equation

$$
\begin{equation*}
x^{\prime \prime}+c x^{\prime}=f\left(t, x, x^{\prime}\right) \tag{1}
\end{equation*}
$$

with the periodic boundary conditions

$$
\begin{equation*}
x(a)=x(b), \quad x^{\prime}(a)=x^{\prime}(b) \tag{2}
\end{equation*}
$$

where $f: I=[a, b] \times R^{2} \rightarrow R$ is a continuous bounded function, $c \neq 0$.
Our goal is to prove two types of existence results for the problem (1), (2) using a method of lower and upper solutions similarly as it is done in [4], [5] for the equation $x^{\prime \prime}=f\left(t, x, x^{\prime}\right)$ with a bounded nonlinearity.

Rachůnková in [3] has proved the existence results with one sided linear growth conditions on f for the case when a lower solution is greater then an upper one. This result can be applied on (1), (2) when $|c|<\frac{1}{b-a}$. Our result need no restriction on a constant c.

Theorem 1 handle with the case when a lower solution is less then an upper one and is proved already in a more general situation when $f-c x^{\prime}$ satisfies a Nagumo-Bernstein condition [1], [4]. We give our proof only for completeness.

We apply the existence results given in Theorems 1 and 2 to prove a multiplicity result for a problem (1), (2) with a periodic nonlinearity.

Definition. The function $\alpha(t)$ is called a lower solution for the problem (1), (2) if

$$
\begin{gathered}
\alpha^{\prime \prime}(t)+c \alpha^{\prime}(t) \geq f\left(t, \alpha(t), \alpha^{\prime}(t)\right) \\
\alpha(a)=\alpha(b) \quad \alpha^{\prime}(a)=\alpha^{\prime}(b)
\end{gathered}
$$

Similarly the function $\beta(t)$ is called an upper solution for the problem (1), (2) if

$$
\begin{gathered}
\beta^{\prime \prime}(t)+c \beta^{\prime}(t) \leq f\left(t, \beta(t), \beta^{\prime}(t)\right) \\
\beta(a)=\beta(b) \quad \beta^{\prime}(a)=\beta^{\prime}(b)
\end{gathered}
$$

If the strict inequalities hold α, β are called strict lower and upper solutions.

Lemma 1. Let α, β be a strict lower and upper solutions and $u(t)$ be a solution of the problem (1), (2).

Then $\alpha(t) \leq u(t)$ implies $\alpha(t)<u(t)$ and $\beta(t) \geq u(t)$ implies $\beta(t)>u(t)$.
Proof. Let $\beta(t) \geq u(t)$ and $0=u\left(t_{0}\right)-\beta\left(t_{0}\right)$ at $t_{0} \in(a, b)$. Then

$$
\begin{aligned}
0 \geq u\left(t_{0}\right)^{\prime \prime}-\beta\left(t_{0}\right)^{\prime \prime} & =u\left(t_{0}\right)^{\prime \prime}-\beta\left(t_{0}\right)^{\prime \prime}+c u\left(t_{0}\right)^{\prime}-c \beta\left(t_{0}\right)^{\prime}= \\
& =f\left(t_{0}, u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)-\beta\left(t_{0}\right)^{\prime \prime}-c \beta\left(t_{0}\right)^{\prime} \geq \\
& \geq f\left(t_{0}, \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right)-\beta\left(t_{0}\right)^{\prime \prime}-c \beta\left(t_{0}\right)^{\prime}>0
\end{aligned}
$$

a contradiction.
Let $0=u(a)-\beta(a), u(t)<\beta(t)$ for $t \in(a, b)$. Then $u^{\prime}(a)=\beta^{\prime}(a)$ and we obtain the same contradiction as above.

Let $X=C^{1}(I), \operatorname{dom} L=\left\{x(t) \in C^{2}(I), x\right.$ satisfies $\left.(2)\right\}, Z=C(I)$. We denote

$$
\begin{aligned}
& L: \operatorname{domL} \subset X \rightarrow Z, \quad L x=x^{\prime \prime}+c x^{\prime} \\
& N: X \rightarrow Z, \quad N x(t)=f\left(t, x(t), x^{\prime}(t)\right)
\end{aligned}
$$

The problem (1), (2) is equivalent to the operator equation

$$
L x=N x,
$$

where the operator N is L-compact [1].
We denote

$$
\Omega_{r, \rho}=\left\{x(t) \in C^{1}(I), \quad\|x\|<r, \quad\left\|x^{\prime}+c x\right\|<\rho\right\} .
$$

Lemma 2. Let

(i) there is a constant $r>0$ such that $f(t, r, 0)>0$ and $f(t,-r, 0)<0$,
(ii) $|f(t, x, y)| \leq M$,

Then there is $\rho_{0}>0$ such that the topological degree

$$
D\left(L, N, \Omega_{r, \rho}\right)=1 \quad(\bmod 2)
$$

for each $\rho>\rho_{0}$ i.e. there is a solution $x(t)$ of (1), (2) such that $|x(t)|<r$, $\left|x^{\prime}(t)+c x(t)\right|<\rho$.
Proof.
We consider the homotopy

$$
L x=\tilde{N}(x, \lambda)
$$

defined by the parametric system of equations

$$
\begin{gather*}
x^{\prime \prime}+c x^{\prime}=\lambda f(t, x, y)+(1-\lambda) x, \tag{6}\\
x(a)=x(b) \quad x^{\prime}(a)=x^{\prime}(b) . \tag{2}
\end{gather*}
$$

Now $-r, r$ are a strict lower and upper solutions of the problem (6).
As $|\lambda f(t, x, y)+(1-\lambda) x,| \leq M+r$, then for each solution of (6) such that $|x(t)| \leq r$ there is $\left|x^{\prime}(t)+c x(t)\right| \leq \frac{b-a}{2}(M+r)=\rho_{0}$.

The above estimation and Lemma 1 imply that no solution of (6), (2) lies on the boundary of $\partial \Omega_{r, \rho}, \rho \geq \rho_{0}$.

By the generalized Borsuk theorem [2]

$$
D\left(L, \tilde{N}(., 1), \Omega_{r, \rho}\right)=D\left(L, \tilde{N}(., 0), \Omega_{r, \rho}\right)=1 \quad(\bmod 2)
$$

and Lemma 2 is proved.

Theorem 1. Let

(i) $\alpha(t)<\beta(t)$ be a strict lower and upper solutions of the problem (1), (2).
(ii) $|f(t, x, y)| \leq M$, for each $(t, x, y), t \in I \alpha(t) \leq x \leq \beta(t), y \in R$.

Then there is a constant ρ_{0} such that for each $\Omega_{1}=\left\{x(t) \in C^{1}(I), \quad \alpha(t)<\right.$ $\left.x(t)<\beta(t), \quad\left\|x^{\prime}+c x\right\|<\rho\right\}, \rho>\rho_{0}$ there is

$$
D\left(L, N, \Omega_{1}\right)=1 \quad(\bmod 2)
$$

i.e. there is a solution $x(t) \in \Omega$ of (1), (2).

Proof.
Let $r=\max \{\|\alpha\|,\|\beta\|\}$,
We define a perturbation

$$
f^{*}(t, x, y)= \begin{cases}f(t, \beta(t), y)+M(r-\beta(t))+M & x>r+1 \\ f(t, \beta(t), y)+M(x-\beta(t)) & \beta(t)<x \leq r+1 \\ f(t, x, y) & \alpha(t) \leq x \beta(t) \\ f(t, \alpha(t), y)-M(\alpha(t)-x) & -r-1 \leq x<\alpha(t) \\ f(t, \alpha(t), y)-M-M(\alpha(t)+r) & x<-r-1\end{cases}
$$

Then $\left|f^{*}\right| \leq 2 M$ and the assumptions of Lemma 2 are satisfied for $\Omega_{r+1, \rho}, \rho>\rho_{0}$ where $\rho_{0}=\frac{b-a}{2}(2 M+r+1)$.

Suppose $u(t) \in \Omega_{r+1, \rho}$ is a solution of the problem

$$
\begin{align*}
& x^{\prime \prime}+c x^{\prime}=f^{*}\left(t, x, x^{\prime}\right), \tag{7}\\
& x(a)=x(b) \quad x^{\prime}(a)=x^{\prime}(b) \tag{2}
\end{align*}
$$

We show that $\alpha \leq u \leq \beta$.
Let $v(t)=u(t)-\beta(t)$ attains its maximum $v_{\max }>0$. Then $\beta(t)+v_{\max }$ is a strict upper solution of (7), (2). Lemma 1 implies $u(t)<\beta(t)+v_{\max }$ a contradiction.

That means $u(t)$ is a solution of (1), (2).
Then

$$
D\left(L, N^{*}, \Omega_{r+1, \rho}\right)=D\left(L, N^{*}, \Omega_{1}\right)=D\left(L, N, \Omega_{1}\right)=1 \quad(\bmod 2)
$$

Now we assume that a lower and upper solutions are in a more general position.

Theorem 2. Let

(i) $|f(t, x, y)|<M$,
(ii) $\alpha, \beta, \alpha(t) \not \leq \beta(t)$, be a strict lower and upper solutions for the problem (1), (2).

Then there are constants $r, \rho_{0}>0$ such that

$$
D\left(L, N, \Omega_{2}\right)=1 \quad(\bmod 2)
$$

where $\Omega_{2}=\left\{x(t) \in C^{1}(I), \exists t_{\alpha}, t_{\beta} \in I, \beta\left(t_{\beta}\right)<x\left(t_{\beta}\right), x\left(t_{\alpha}<\alpha\left(t_{\alpha}\right),\|x\|<\right.\right.$ $\left.r,\left\|x^{\prime}+c x\right\|<\rho\right\} \quad \rho>\rho_{0}$,
i.e. there is a solution $x(t) \in \Omega_{2}$ of the problem (1), (2).

Proof. Let $r=\max (\|\alpha\|,\|\beta\|)+\frac{(b-a)}{c} M$.
We define a perturbation f^{*} by

$$
f^{*}(t, x, y)= \begin{cases}f(t, x, y)+M & x>r+1 \\ f(t, x, y)+M(x-r) & r<x \leq r+1 \\ f(t, x, y) & -r \leq x \leq r \\ f(t, x, y)+M(x+r) & -r-1 \leq x<-r \\ f(t, x, y)-M & x<-r-1\end{cases}
$$

Clearly $r+1,-r-1$ are a strict lower and upper solutions of the problem

$$
\begin{gather*}
x^{\prime \prime}+c x^{\prime}=f^{*}\left(t, x, x^{\prime}\right) \tag{8}\\
x(a)=x(b) \quad x^{\prime}(a)=x^{\prime}(b) \tag{2}
\end{gather*}
$$

As $\left|f^{*}\right|<2 M$ then for each solution of (8) the boundary conditions (2) imply $\left|x^{\prime}(t)+c x(t)\right| \leq(b-a) M$. Then $\max |x(t)| \leq \frac{(b-a) M}{c}$.

Set $\rho_{0}=\frac{(b-a)}{2}(2 M+r+1)$.
Then for $\rho>\rho_{0}$

$$
D\left(L, N^{*}, \Omega_{r+1, \rho}\right)=1 \quad(\bmod 2)
$$

Let now

$$
\begin{aligned}
& \Omega_{l}=\left\{x(t) \in \Omega_{r+1, \rho}, \quad-r-1<x<\beta\right\} \\
& \Omega_{u}=\left\{x(t) \in \Omega_{r+1, \rho}, \quad \alpha<x<r+1\right\}
\end{aligned}
$$

Then

$$
D\left(L, N^{*}, \Omega_{l}\right)=D\left(L, N^{*}, \Omega_{u}\right)=1 \quad(\bmod 2)
$$

Set $\Omega_{m}=\Omega_{r+1, \rho} \backslash\left(\overline{\Omega_{l} \cup \Omega_{u}}\right)$.
As $-r-1, \alpha, r+1, \beta$ are strict lower and upper solutions, Lemma 1 implies there is no solution $u \in \partial \Omega_{m}$.

The addition property of the degree means

$$
D\left(L, N^{*}, \Omega_{m}\right)=1 \quad(\bmod 2)
$$

and finally the excision property implies

$$
D\left(L, N^{*}, \Omega_{m}\right)=D\left(L, N^{*}, \Omega_{2}\right)=D\left(L, N, \Omega_{2}\right)=1 \quad(\bmod 2)
$$

We apply the previous results to a periodic boundary value problem for a generalized oscillator

$$
\begin{gather*}
x^{\prime \prime}+c x^{\prime}=f\left(t, x, x^{\prime}\right) \tag{1}\\
x(a)=x(b) \quad x^{\prime}(a)=x^{\prime}(b), \tag{2}
\end{gather*}
$$

assuming that the function f is $2-\pi$ periodic in variable x.
Assume that there are $\alpha(t), \beta(t)$ a strict lower and upper solutions of (1), (2). The periodicity of f implies that $\alpha(t)+2 k \pi, \beta(t)+2 k \pi$ are again a strict lower and upper solutions of (1), (2) for each $k \in Z$.

Then there is a $k \in Z$ such that $\alpha(t)+2 k \pi<\beta(t)$ and $\alpha(t)+(2 k+1) \pi \not \leq \beta(t)$. Then Theorem 1 and Theorem 2 imply there are two different families $x_{1}(t)+2 k \pi$, $x_{2}(t)+2 k \pi$ of solutions of the problem (1), (2).

References

1. Mawhin J., Points fixes, points critiques et probl'emes aux limites, Sémin. Math. Sup. no.92, Presses Univ. Montréal, Montréal, 1985.
2. Mawhin J., Equivalence theorems for Nonlinear operator equations and Coincidence degree theory for some mappings in locally convex topological vector spaces, JDE 12 (1972), 610-636.
3. Rachůnková I., Multiple solutions of Nonlinear Boundary Value Problems and Topological Degree, Proceedings of the Conference Equadiff 9 (Brno, 1997), Masaryk Univ., 1998, pp. 861876.
4. Rachůnková I., Upper and Lower Solutions and Topological Degree, JMAA 234 (1999), 311327.
5. Rudolf B., Method of lower and upper solutions for a generalized boundary value problem, Archivum mathematicum 36 (2000), 595-602.
