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We consider the second order differential equation

x′′ + cx′ = f(t, x, x′) (1)

with the periodic boundary conditions

x(a) = x(b), x′(a) = x′(b) (2)

where f : I = [a, b]×R2 → R is a continuous bounded function, c 6= 0.
Our goal is to prove two types of existence results for the problem (1), (2) using

a method of lower and upper solutions similarly as it is done in [4], [5] for the
equation x′′ = f(t, x, x′) with a bounded nonlinearity.

Rach̊unková in [3] has proved the existence results with one sided linear growth
conditions on f for the case when a lower solution is greater then an upper one.
This result can be applied on (1), (2) when |c| < 1

b−a . Our result need no restriction
on a constant c.

Theorem 1 handle with the case when a lower solution is less then an upper
one and is proved already in a more general situation when f − cx′ satisfies a
Nagumo–Bernstein condition [1], [4]. We give our proof only for completeness.

We apply the existence results given in Theorems 1 and 2 to prove a multiplicity
result for a problem (1), (2) with a periodic nonlinearity.

Definition. The function α(t) is called a lower solution for the problem (1), (2) if

α′′(t) + cα′(t) ≥ f(t, α(t), α′(t)),

α(a) = α(b) α′(a) = α′(b).

Similarly the function β(t) is called an upper solution for the problem (1), (2) if

β′′(t) + cβ′(t) ≤ f(t, β(t), β′(t)),

β(a) = β(b) β′(a) = β′(b).

If the strict inequalities hold α, β are called strict lower and upper solutions.
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Lemma 1. Let α, β be a strict lower and upper solutions and u(t) be a solution
of the problem (1), (2).

Then α(t) ≤ u(t) implies α(t) < u(t) and β(t) ≥ u(t) implies β(t) > u(t).

Proof. Let β(t) ≥ u(t) and 0 = u(t0)− β(t0) at t0 ∈ (a, b). Then

0 ≥ u(t0)′′ − β(t0)′′ =u(t0)′′ − β(t0)′′ + cu(t0)′ − cβ(t0)′ =

=f(t0, u(t0), u′(t0))− β(t0)′′ − cβ(t0)′ ≥
≥f(t0, β(t0), β′(t0))− β(t0)′′ − cβ(t0)′ > 0,

a contradiction.
Let 0 = u(a)− β(a), u(t) < β(t) for t ∈ (a, b). Then u′(a) = β′(a) and we obtain

the same contradiction as above. ¤
Let X = C1(I), domL = {x(t) ∈ C2(I), x satisfies (2)}, Z = C(I). We denote

L : domL ⊂ X → Z, Lx = x′′ + cx′,

N : X → Z, Nx(t) = f(t, x(t), x′(t)).

The problem (1), (2) is equivalent to the operator equation

Lx = Nx,

where the operator N is L-compact [1].
We denote

Ωr,ρ = {x(t) ∈ C1(I), ||x|| < r, ||x′ + cx|| < ρ}.
Lemma 2. Let

(i) there is a constant r > 0 such that f(t, r, 0) > 0 and f(t,−r, 0) < 0,
(ii) |f(t, x, y)| ≤ M,
Then there is ρ0 > 0 such that the topological degree

D(L,N, Ωr,ρ) = 1 (mod 2)

for each ρ > ρ0 i.e. there is a solution x(t) of (1), (2) such that |x(t)| < r,
|x′(t) + cx(t)| < ρ.

Proof.
We consider the homotopy

Lx = Ñ(x, λ)

defined by the parametric system of equations

x′′ + cx′ = λf(t, x, y) + (1− λ)x, (6)

x(a) = x(b) x′(a) = x′(b). (2)

Now −r, r are a strict lower and upper solutions of the problem (6).
As |λf(t, x, y) + (1 − λ)x, | ≤ M + r, then for each solution of (6) such that

|x(t)| ≤ r there is |x′(t) + cx(t)| ≤ b− a

2
(M + r) = ρ0.

The above estimation and Lemma 1 imply that no solution of (6), (2) lies on the
boundary of ∂Ωr,ρ, ρ ≥ ρ0.

By the generalized Borsuk theorem [2]

D(L, Ñ(., 1), Ωr,ρ) = D(L, Ñ(., 0), Ωr,ρ) = 1 (mod 2)

and Lemma 2 is proved. ¤
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Theorem 1. Let
(i) α(t) < β(t) be a strict lower and upper solutions of the problem (1), (2).
(ii) |f(t, x, y)| ≤ M, for each (t, x, y), t ∈ I α(t) ≤ x ≤ β(t), y ∈ R.
Then there is a constant ρ0 such that for each Ω1 = {x(t) ∈ C1(I), α(t) <

x(t) < β(t), ||x′ + cx|| < ρ}, ρ > ρ0 there is

D(L, N, Ω1) = 1 (mod 2)

i.e. there is a solution x(t) ∈ Ω of (1), (2).

Proof.
Let r = max{||α||, ||β||},
We define a perturbation

f∗(t, x, y) =





f(t, β(t), y) + M(r − β(t)) + M x > r + 1,

f(t, β(t), y) + M(x− β(t)) β(t) < x ≤ r + 1,

f(t, x, y) α(t) ≤ xβ(t),

f(t, α(t), y)−M(α(t)− x) −r − 1 ≤ x < α(t),

f(t, α(t), y)−M −M(α(t) + r) x < −r − 1.

Then |f∗| ≤ 2M and the assumptions of Lemma 2 are satisfied for Ωr+1,ρ, ρ > ρ0

where ρ0 =
b− a

2
(2M + r + 1).

Suppose u(t) ∈ Ωr+1,ρ is a solution of the problem

x′′ + cx′ = f∗(t, x, x′), (2), (7)

x(a) = x(b) x′(a) = x′(b). (2)

We show that α ≤ u ≤ β.
Let v(t) = u(t)−β(t) attains its maximum vmax > 0. Then β(t)+vmax is a strict

upper solution of (7), (2). Lemma 1 implies u(t) < β(t) + vmax a contradiction.
That means u(t) is a solution of (1), (2).
Then

D(L,N∗, Ωr+1,ρ) = D(L,N∗, Ω1) = D(L,N, Ω1) = 1 (mod 2). ¤

Now we assume that a lower and upper solutions are in a more general position.

Theorem 2. Let
(i) |f(t, x, y)| < M,
(ii) α, β, α(t) � β(t), be a strict lower and upper solutions for the problem (1),

(2).
Then there are constants r, ρ0 > 0 such that

D(L, N, Ω2) = 1 (mod 2)

where Ω2 = {x(t) ∈ C1(I), ∃tα, tβ ∈ I, β(tβ) < x(tβ), x(tα < α(tα), ||x|| <
r, ||x′ + cx|| < ρ} ρ > ρ0,
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i.e. there is a solution x(t) ∈ Ω2 of the problem (1), (2).

Proof. Let r = max (||α||, ||β||) +
(b− a)

c
M.

We define a perturbation f∗ by

f∗(t, x, y) =





f(t, x, y) + M x > r + 1,

f(t, x, y) + M(x− r) r < x ≤ r + 1,

f(t, x, y) −r ≤ x ≤ r,

f(t, x, y) + M(x + r) −r − 1 ≤ x < −r,

f(t, x, y)−M x < −r − 1.

Clearly r + 1, −r − 1 are a strict lower and upper solutions of the problem

x′′ + cx′ = f∗(t, x, x′), (8)

x(a) = x(b) x′(a) = x′(b). (2)

As |f∗| < 2M then for each solution of (8) the boundary conditions (2) imply

|x′(t) + cx(t)| ≤ (b− a)M . Then max|x(t)| ≤ (b− a)M
c

.

Set ρ0 =
(b− a)

2
(2M + r + 1).

Then for ρ > ρ0

D(L,N∗, Ωr+1,ρ) = 1 (mod 2)

Let now

Ωl = {x(t) ∈ Ωr+1,ρ, −r − 1 < x < β},
Ωu = {x(t) ∈ Ωr+1,ρ, α < x < r + 1}.

Then
D(L,N∗, Ωl) = D(L,N∗, Ωu) = 1 (mod 2)

Set Ωm = Ωr+1,ρ \
(
Ωl ∪ Ωu

)
.

As −r − 1, α, r + 1, β are strict lower and upper solutions, Lemma 1 implies
there is no solution u ∈ ∂Ωm.

The addition property of the degree means

D(L,N∗, Ωm) = 1 (mod 2)

and finally the excision property implies

D(L,N∗, Ωm) = D(L,N∗, Ω2) = D(L,N, Ω2) = 1 (mod 2). ¤
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We apply the previous results to a periodic boundary value problem for a gen-
eralized oscillator

x′′ + cx′ = f(t, x, x′) (1)

x(a) = x(b) x′(a) = x′(b), (2)

assuming that the function f is 2–π periodic in variable x.
Assume that there are α(t), β(t) a strict lower and upper solutions of (1), (2).

The periodicity of f implies that α(t) + 2kπ, β(t) + 2kπ are again a strict lower
and upper solutions of (1), (2) for each k ∈ Z.

Then there is a k ∈ Z such that α(t) + 2kπ < β(t) and α(t) + (2k + 1)π � β(t).
Then Theorem 1 and Theorem 2 imply there are two different families x1(t) + 2kπ,
x2(t) + 2kπ of solutions of the problem (1), (2).
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