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Abstract

A Latin square L = L(`ij) over the set S = {0, 1, . . . , n − 1} is called
totally non-polynomial over Zn iff

1. there are no polynomials Ui(y) ∈ Zn[y] such that Ui(j) = `ij for all
i, j ∈ Zn;

2. there are no polynomials Vj(x) ∈ Zn[x] such that Vj(i) = `ij for all
i, j ∈ Zn.

In the presented paper we describe four possible constructions of such
Latin squares which might be of particular interest for cryptographers.
Some estimations fro the number of such Latin squares is given as well.

Key-words: Latin squares, polynomial approximation, block
ciphers.

1 Introduction and motivation

One of the basic parts of any block cipher algorithm (BCA), or
substitution - permutation network (SPN), is a (group) composi-
tion of a piece of plaintext, say x, and a part of a round key, say
κ. The simplest example of such a situation is probably the Ver-
nam cipher. Another example is so called Extended Feistel Cipher
[Čanda, Trung–2002], the round structure of which is visualized on
Fig. 1. Symbols ⊕,¯,¢ can be assumed as quasigroup operations.

In [Grošek, Satko, Nemoga–2000] and related papers, the authors
showed that using quasigroups instead of groups allows more possi-
bilities to gain ideal parameters for some cryptographic primitives.
One such situation is as follows:

Let an attacker has an access to outputs from a composition x∗κ
of messages x and round keys κ, both belonging to a quasigroup
(S, ∗) where S = {0, 1, . . . , n−1}. Let Zn be the (mod n) ring. If
we assume Cayley table for (S, ∗) as a Latin square, say L = L(`ij)
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Figure 1: Round Structure

such that i ∗ j = `ij, his aim is then to find a polynomial function
f : Zn × Zn → Zn in two variables

f(x, y) = a0 + a10x + a01y + a20x
2 + a11xy + a02y

2 + . . . (1)

such that

1. for all i ∈ Zn, f(i, y) = Ui(x) is a permutation polynomial over
Zn;

2. for all j ∈ Zn, f(x, j) = Vj(y) is a permutation polynomial over
Zn;

3. for all x, y ∈ S, x ∗ y = `xy = f(x, y).

As a simple example of such a “polynomial quasigroup” one may
assume a quasigroup (S, ∗) where multiplication is defined as

x ∗ y ≡ ax + by + c (mod n),

where gcd(a, n) = gcd(b, n) = 1.
From the point of view of a designer, just the opposite is required -

to use a Latin square with maximum degree of “non-polynomiality”,
and this is the main goal of this paper. It is clear that to speak about
quasigroups, or Latin squares in this sense is equivalent. Below we
show two kinds of constructions for such Latin squares. These con-
structions serve at least exp{4n ln n + 2 ln ln n} such Latin squares.

2 Non-polynomial Latin squares

Let n = pα1
1 pα2

2 . . . pαr
r be the canonical form of n where r > 1.

Hence, hereafter we assume that the set D of all non-trivial divisors
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of n has cardinality at least 2. Recall, that due to global Euler–
Fermat theorem [Schwarz–1981], for any x ∈ Zn we have

xmax αi+λ(n) ≡ xmax αi (mod n)

where λ is the Carlmichael function. This implies that the highest
power in such a polynomial f is at most

w = λ(n) + max αi − 1. (2)

Clearly, a decision problem whether for a given quasigroup there
exists a permutation polynomial of the form (1) towards to polyno-
mial interpolation over the ring Zn. We emphasize that in the case
n = pk, p-prime, a similar question about polynomial interpolation
over the field GF (pk) is trivial1: to any Latin square of the size pk

there exists the unique polynomial such that if i ∗ j = `ij, i, j ∈ S
then

f(x, y) =
n−1∑
u=0

n−1∑
v=0

(1− (x− u)n−1)(1− (y − v)n−1)`uv. (3)

Thus any Latin square of the size n = pk, p-prime, is polynomial
over the field GF (pk).

Now we prove a basic lemma for the first type of constructions
of non-polynomial Latin squares.

LEMMA 1 Let d be a non-trivial divisor of n, and βi ∈ Zn be
distinct elements, where 0 ≤ i ≤ n−1, such that βd 6≡ β0 (mod d).
Then there is no polynomial U(x) ∈ Zn[x] such that U(i) = βi for
all i.

Proof. Let there exists a polynomial U(x) =
∑w

k=0 akx
k, where w

has the same meaning as in (2). Then

U(d)− U(0) = d

w∑

k=1

akd
k−1 ≡ βd − β0 (mod n).

Since d|n we necessarily have d|(βd − β0), a contradiction with our
supposition βd 6≡ β0 (mod d). This completes the proof.

1Clearly we suppose that there is a one to one mapping from the field GF (pk) to the set
S = {0, 1, . . . , n− 1}.
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COROLLARY 1 Let d be a non-trivial divisor of n, and βi ∈
Zn be distinct elements, where 0 ≤ i ≤ n − 1, such that βd 6≡ β0

(mod d). Let for a fixed h ∈ Zn, γi ≡ βi + h (mod n). Then there
is no polynomial U(x) ∈ Zn[x] such that U(i) = γi for all i.

The proof is straightforward by a contradiction with Lemma 1.

This Lemma, and Corollary yields the sufficient condition for a
non-polynomial permutation over Zn, and in fact outline the way
for a construction of so called totally non-polynomial Latin squares.

DEFINITION 1 A Latin square L = L(`ij) over the set S =
{0, 1, . . . , n− 1} is called totally non-polynomial over Zn iff

1. there are no polynomials Ui(y) ∈ Zn[y] such that Ui(j) = `ij

for all i, j ∈ Zn;

2. there are no polynomials Vj(x) ∈ Zn[x] such that Vj(i) = `ij for
all i, j ∈ Zn.

Clearly, for totally non-polynomial Latin squares there is no func-
tion like (1). Not all Latin squares are polynomial, and in fact there
are plenty of totally non-polynomial Latin squares.

Theorem 4.3.1 from [Ding,Pei,Salomaa–1996] yields another con-
struction for finding totally non-polynomial Latin squares in a spe-
cial case for a square free number n.

THEOREM 1 Let n be a square free number, n = p1p2 . . . pr, and
(S, ∗) a quasigroup with n elements. Let I ⊂ S, and βi ∈ Zn where
i ∈ I. There is a polynomial U(x) ∈ Zn[x] such that U(i) = βi for
all i ∈ I iff i ≡ j (mod ps) implies that βi ≡ βj (mod ps) for all
possible i, j ∈ I, and s = 1, 2, . . . r.

3 Construction of a totally non-polynomial Latin
square

In this section we present 4 different constructions of totally non-
polynomial Latin squares. The first three are based on Lemma 1,
and the last one is based on Theorem 1.

CONSTRUCTION 1 Latin square will be constructed as follows:
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1. Set `00 = 0.

2. Take a permutation π of the set D without fixed points. Let
`0d = `d0 = π(d) for all d ∈ D. This condition is easy to
see, since a fixed point would lead to a contradiction with the
sufficient condition from Lemma 1.

3. Take a permutation ρ of the set S \ {D ∪ 0}. Let `0a = `a0 =
ρ(a) for all a ∈ S \ {D ∪ 0}. As a result we have defined two
non-polynomial permutations, namely for the first row and first
column, respectively.

4. For i, j 6= 0, let `ij be defined as follows: if `i0 − `00 ≡ h
(mod n) then `ij ≡ `0j + h (mod n).

The resulting Latin square satisfies:

• Each row is a translation of the first row due to the differences
served by the first column;

• Each column is a translation of the first column due to symme-
try h + `0j ≡ `j0 + h ≡ `ij (mod n);

• According to Lemma 1 and its Corollary, all rows and columns
represent a non-polynomial permutation.

EXAMPLE 1 Let n = 6, i.e. the set of all non-trivial divisors is
D = {2, 3}. Then there are only 3!=6 possible Latin squares. Two
of them are displayed below:

i \ j 0 1 2 3 4 5
0 0 4 3 2 5 1
1 4 2 1 0 3 5
2 3 1 0 5 2 4
3 2 0 5 4 1 3
4 5 3 2 1 4 0
5 1 5 4 3 0 2

i \ j 0 1 2 3 4 5
0 0 5 3 2 1 4
1 5 4 2 1 0 3
2 3 2 0 5 4 1
3 2 1 5 4 3 0
4 1 0 4 3 2 5
5 4 3 1 0 5 2

where

D 2 3
π 3 2

S \ {D ∪ 0} 1 4 5
ρ1 4 5 1
ρ2 5 1 4
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Next we need a well known result: number D(n), of permutations
without fixed points over a set of the cardinality n is given by the
formula

D(n) = n!
(
1− 1

1!
+

1

2!
− . . . + (−1)n 1

n!

)
≈ n!e−1. (4)

For n = 0, D(n) = 1 by definition, and D(1) = 0.
From Construction 1 one can see that

- There is no need to assume permutation π on the whole set
of divisors D only. In fact the necessary condition for this
construction is to take a nonempty subset of D, say of the
cardinality k, and not to allow fixed points. This yields the
number D(k) of possibilities in the case 0 ≤ k ≤ |D| − 2, and
one possibility in the case k = 1 respectively.

- There are no conditions on the permutation ρ over the set
of cardinality m = n − k − 1 which gives m! possibilities to
choose the rest of the first row in the constructed totally non-
polynomial Latin square. This yields the total number of pos-
sibilities for the first row as

(n− 2)!

( |D|
|D| − 1

)
+

|D|−2∑

k=0

D(k)

(|D|
k

)
(n− k − 1)! =

(n− 2)!|D|+
|D|−2∑

k=0

D(k)

(|D|
k

)
(n− k − 1)!

- Finally, the same generalization can be made with the first
column.

Thus we have a lower bound Lnp for the number of totally
non-polynomial Latin squares over a set of the size n:

Lnp ≥
(
(n− 2)!|D|+

|D|−2∑

k=0

D(k)

(|D|
k

)
(n− k − 1)!

)2

. (5)

Recall that the number of divisors of n = pα1
1 pα2

2 . . . pαr
r is

σ(n) = (α1 + 1)(α2 + 1) . . . (αr + 1), (6)
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and for large n, |D| = σ(n) ≈ ln n in average. Then for a
randomly chosen and large n this number is of the size ≈
exp{4n ln n + 2 ln ln n}.

CONSTRUCTION 2

1. Set `00 = 0.

2. Take a permutation πr of the subset of D without fixed points.
This condition is easy to see, since a fixed point would lead to
a contradiction with the sufficient condition from Lemma 1.

3. Take a permutation ρr of the set S \ {D ∪ 0}. As a result we
have defined a non-polynomial permutation for the first row.

4. Take a permutation πc of the subset of D without fixed points.
This condition is easy to see, since a fixed point would lead to
a contradiction with the sufficient condition from Lemma 1.

5. Take a permutation ρc of the set S \ {D ∪ 0}. As a result we
have defined a non-polynomial permutation for the first column.

6. For i, j 6= 0, let `ij be defined as follows: if `i0 − `00 ≡ h
(mod n) then `ij ≡ `0j + h (mod n).

EXAMPLE 2 Let n = 6, i.e. the set of all non-trivial divisors is
D = {2, 3}. Then there are other possible Latin squares not men-
tioned in Example 1, namely:

1. For k = 0 we have 3! = 6 permutations over the set {1, 4, 5}
and one permutation without fixed points.

2. For k = 1, i.e. the subset {2} ⊂ D we have 4!=24 permutations
over the set {1, 3, 4, 5}.

3. Similarly, for k = 1, and the subset {3} ⊂ D we have another
24 possibilities.

4. Thus we have 2 ∗ 4! + 3! = 54 choices for the first row, and the
same number for the first column, i.e. at least 542 = 2916 non-
polynomial Latin squares in total. Two of them are displayed
below.
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i \ j 0 1 2 3 4 5
0 0 4 3 2 5 1
1 5 3 2 1 4 0
2 3 1 0 5 2 4
3 2 0 5 4 1 3
4 1 5 4 3 0 2
5 4 2 1 0 3 5

i \ j 0 1 2 3 4 5
0 0 5 3 2 1 4
1 4 3 1 0 5 2
2 3 2 0 5 4 1
3 2 1 5 4 3 0
4 5 4 2 1 0 3
5 1 0 4 3 2 5

Here is a modification of the previous Construction allowing fixed
points:

CONSTRUCTION 3

1. Set `00 = 0.

2. Choose j0 ∈ D and u ∈ S such that u 6≡ 0 (mod j0).

3. Take a permutation πr of the set S \ {0, u}.
4. Set `0j0 = u, `0,j = πr(j) for the remaining elements j 6= j0.

5. Choose i0 ∈ D and v ∈ S such that v 6≡ 0 (mod i0).

6. Take a permutation πc of the set S \ {0, v}.
7. Set `i00 = v, `i0 = πc(i) for the remaining elements i 6= i0.

8. Having the first row and the first column of L fill the empty
cells with

`ij ≡ `i0 + `0j (mod n).

Remark that as in previous constructions for all i, j ∈ S

`ij − `i0 ≡ `0j − `00 (mod n)

`ij − `0j ≡ `i0 − `00 (mod n),

i.e. each row (resp. column) of L is a translation of another
row (resp. column). By Lemma 1 the row i0 (resp. column
j0) is non-polynomial. Therefore each row (resp. column) is
non-polynomial.
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EXAMPLE 3 Again for n = 6 one possible Latin square is as
follows (chosen elements u = 3, v = 5 are in box):

i \ j 0 1 2 3 4 5

0 0 1 3 2 5 4
1 4 5 1 0 3 2
2 2 3 5 4 1 0

3 5 0 2 1 4 3
4 3 4 0 5 2 1
5 1 2 4 3 0 5

In the Construction 3 we have (n − n
j0

) possibilities for u. For

each such chosen u there are (n−2)! possibilities to fill the first row
of L. Similarly, there are (n − n

i0
) choices for v, and for all such v

we have (n− 2)! possibilities to fill the first column of L. Hence the
number of Latin squares is

Lnp ≥ (n− n

j0

)(n− n

i0
)(n− 2)! (7)

Our last construction is based on Theorem 1.

CONSTRUCTION 4

1. Set `00 = 0.

2. Choose j0 ∈ {p1, p2, . . . , pr} and u ∈ S such that u 6≡ 0 (mod j0).

3. Choose i0 ∈ {p1, p2, . . . , pr} and v ∈ S such that v 6≡ 0 (mod i0).

4. Take a permutation πr of the set S \ {0, u} for the row i0 such
that for j 6= 0 is

`i0j − `0j 6≡ 0 (mod i0).

5. Take a permutation πc of the set S \ {0, v} for the column j0

such that for i 6= 0 is

`ij0 − `i0 6≡ 0 (mod j0).

6. Having the row i0 and the column j0 of L try to fill the remain-
ing cells with `ij. If the partially constructed Latin square by

9



steps 1–5 can be extended to the Latin square over the set S,
then it is totally non-polynomial. To prove it, let t be any row
of L. Take i = 0 and j = j0. Then i ≡ j (mod j0). But

`tj0 − `t0 6≡ 0 (mod j0)

by construction. By Theorem 1 the row t cannot be described
by any polynomial. Similarly we can use the same arguments
for any column. Therefore each row (resp. column) is non-
polynomial.

At this place we should point out that steps 2-5 from Construc-
tion 4 can be extended to a larger subset of {p1, p2, . . . , pr}.

4 The best polynomial approximation

One may also wonder about the best polynomial approximation of
some cells for a totally non-polynomial Latin square. What does it
mean we present on the Latin square from Example 1.

Let us assume the Latin square from Example 1, and a polyno-
mial function g(x, y) = 4x + 4y. This function coincide with the
following values of this Latin square: `00, `01, `10, `11, `25, `45, `52, `54,
i.e. with 8 out of 36 values. In this sense one may look for a bet-
ter approximation, i.e. for a polynomial which coincide with more
values than the presented g.

To find the best polynomial approximation for a given Latin
square of the size n, based on the exhaustive computer search (a
non-polynomial algorithm) needs

1. searching for all possible functions g(x, y) (coefficients aij, i, j =
0, 1, 2, . . . , (w + 1)), i.e.

1 + 2 + . . . + (w + 1) =
(w + 2)(w + 1)

2

steps;

2. n choices for each aij, i.e.

n
(w+2)(w+1)

2

steps;
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3. to each possible function g(x, y) find its n2 values, and

4. compare them to `ij.

This represents

n2+
(w+2)(w+1)

2

steps, and at most n2 comparisons in each tested case. Finally
the best polynomial with the highest number Nc(n) of fitting with
numbers in cells is found.

The function g(x, y) = 4x + 4y, mentioned above, is not the best
possible of this kind. One of the best one, found by exhaustive
computer search is f(x, y) = 2 + 2x + 2y + 4xy + xy2 + x2y + x2y2

with the number of coincidence 13. Coincidence is marked in bold:

i \ j 0 1 2 3 4 5
0 0 4 3 2 5 1
1 4 2 1 0 3 5
2 3 1 0 5 2 4
3 2 0 5 4 1 3
4 5 3 2 1 4 0
5 1 5 4 3 0 2

Now the question arises naturally: for a given totally non-poly-
nomial Latin square find some lower and upper bound of the number
Nc(n) of the best coincidence accomplished by polynomial approx-
imation. Trivial bounds are n ≤ Nc(n) ≤ (n − 1)2. The Latin
square from Example 3 has one of the best polynomial approxima-
tions f(x, y) = 1 + x + 5y + y2 + 3xy with Nc(6) = 13.

A better non-polynomial Latin square based on Construction 4 is
presented in the next example. In this example, the set from steps
2-5 is extended to 3 elements. In fact, for n = 6 it is the best we
have found.

EXAMPLE 4 Again for n = 6 one possible Latin square is pre-
sented below. Elements which coincide are in bold. The best polyno-
mial approximation is f(x, y) = 4 + 3x + 3y with number of coinci-
dence Nc(6) = 12.
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i \ j 0 1 2 3 4 5

0 0 2 5 1 4 3

1 2 4 1 3 0 5

2 5 1 4 0 3 2

3 1 3 0 2 5 4

4 4 0 3 5 2 1

5 3 5 2 4 1 0

NOTE The fact that f(x, y) is the best polynomial approxima-
tion does not yields that Ui(y) = f(i, y) or Vj(x) = f(x, j) are the
best polynomial approximations for rows or columns respectively.

5 Conclusions

Although there is some information about the set of divisors of n,
the bit size of a secret for a randomly chosen totally non-polynomial
Latin square is the same as to choose two specific permutations, one
for the first row and another one for the first column, i.e. 2 log2(n!) ≈
n ln n.

To have an idea about the number of possible totally non-polynomial
Latin squares one should compare it with the number of distinct
normalized Latin squares which is of the magnitude of L(n) ≈
(e−2n)n2 ≈ exp{n2 ln n}. Unfortunately, we do not have an up-
per bound for Nc(n) accomplished by any of our Constructions 1 to
4. We finish with a Hypothesis:

Hypothesis Let n be a square free number, n = p1p2 . . . pr where
p1 < p2 < . . . < pr. Then there exists a Latin square over the
set {0, 1, 2, . . . , n− 1} such that the best polynomial approximation
coincide with exactly np1 cells and this result is the best possible
one.
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