ORDER-TOPOLOGICAL LATTICE EFFECT ALGEBRAS

ZDENKA RIEČANOVÁ

ABSTRACT. We study order convergence of nets in lattice effect algebras, which generalized orthomodular lattices, including Boolean algebras and MV-algebras in quantum or fuzzy probability theory. We show that in a complete atomic (o)-continuous effect algebra E the order convergence of nets is topological if and only if the order topology on E is Hausdorff. If moreover E is distributive (e.g., MV-algebra) then the order topology is compact Hausdorff.

1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras, or equivalent in some sense D-posets were introduced as carriers of probability measure in quantum or fuzzy probability theory. Elements of these structures represent quantum effects or fuzzy events that may be unsharp or imprecise ([6], [13]). Lattice ordered effect algebras generalize orthomodular lattices [12] including Boolean algebras and MV-algebras [1], [2], [10], [11], [14].

Definition 1. [6]. A structure $(E; \oplus, 0, 1)$ is called an effect-algebra if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on P which satisfies the following conditions for any $a, b, c \in E$:

- (i) $b \oplus a = a \oplus b$ if $a \oplus b$ is defined,
- (ii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined,
- (iii) for every $a \in P$ there exists a unique $b \in P$ such that $a \oplus b = 1$ (we put a' = b),
- (iv) if $1 \oplus a$ is defined then a = 0.

We often denote the effect algebra $(E; \oplus, 0, 1)$ briefly by E. In every effect algebra E we can define the partial operation \ominus and the partial order \leq by putting

 $a \leq b$ and $b \ominus a = c$ iff $a \oplus c$ is defined and $a \oplus c = b$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 06B30; secondary 06D15, 06D35, 81P10.

 $Key\ words\ and\ phrases.$ Lattice effect algebra, order convergence, order topological effect algebras.

This work was supported by grant G-1/0266/03 of MŠ SR, Slovakia.

Since $a \oplus c = a \oplus d$ implies c = d, the \ominus and the \leq are well defined. If E with the defined partial order is a lattice (a complete lattice) then $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* (a *complete effect algebra*). If $(E; \oplus, 0, 1)$ is an effect algebra then $(E; \ominus, 0, 1)$ with the partial binary operation \ominus defined above is a *D*-poset, introduced by Kôpka [13] as a new algebraic structure of fuzzy sets, and vice versa, [14]. For more details on *D*-posets and effect algebras we refer the reader to [3], [15].

Definition 2. Elements a and b of a lattice effect algebra E are called compatible (written $a \leftrightarrow b$) if $a \lor b = a \oplus (b \ominus (a \land b))$, [14].

On many places we will need the following statement proved in [11].

Lemma 3. Let E be a lattice effect algebra and $A \subseteq E$ with $\bigvee A$ existing in E. If $b \in E$ is compatible with every $a \in A$ then $b \leftrightarrow \bigvee A$ and $b \land (\bigvee A) = \bigvee \{a \land b \mid a \in E\}.$

A lattice effect algebra is called *modular* or *distributive* if E as a lattice has these properties [9]. A lattice effect algebra is called an *MV*-effect algebra if every two elements $a, b \in E$ are compatible. It has been shown by Kôpka and Chovanec [14] that an MV-effect algebra E can be organized into an MValgebra and vice versa.

2. TOPOLOGICAL EFFECT ALGEBRAS

Assume that $(\mathcal{E}; \prec)$ is a directed set and $(P; \leq)$ is a poset. A net of elements of P is denoted by $(a_{\alpha})_{\alpha \in \mathcal{E}}$. If $a_{\alpha} \leq a_{\beta}$ for all $\alpha, \beta \in \mathcal{E}$ such that $\alpha \prec \beta$ then we write $a_{\alpha} \uparrow$. If moreover $a = \bigvee \{a_{\alpha} \mid \alpha \in \mathcal{E}\}$ we write $a_{\alpha} \uparrow a$. The meaning of $a_{\alpha} \downarrow$ and $a_{\alpha} \downarrow a$ is dual. For instance, $a \uparrow u_{\alpha} \leq v_{\alpha} \downarrow b$ means that $u_{\alpha} \leq v_{\alpha}$ for all $\alpha \in \mathcal{E}$ and $u_{\alpha} \uparrow a$ and $v_{\alpha} \downarrow b$. We will write $b \leq a_{\alpha} \uparrow a$ if $b \leq a_{\alpha}$ for all $\alpha \in \mathcal{E}$ and $a_{\alpha} \uparrow a$.

A net $(a_{\alpha})_{\alpha \in \mathcal{E}}$ of elements of a poset $(P; \leq)$ order converges ((o)-converges, for short) to a point $a \in P$ if there are nets $(u_{\alpha})_{\alpha \in \mathcal{E}}$ and $(v_{\alpha})_{\alpha \in \mathcal{E}}$ of elements of P such that

$$a \uparrow u_{\alpha} \le a_{\alpha} \le v_{\alpha} \downarrow a$$
.

We write $a_{\alpha} \stackrel{(o)}{\rightarrow} a$ in P (or briefly $a_{\alpha} \stackrel{(o)}{\rightarrow} a$).

The strongest (biggest) topology on a poset $(P; \leq)$ such that (o)-convergence of nets of elements of P implies topological convergence is called *order topol*ogy ((o)-topology) on P and it is denoted by τ_o . The order sequence topology denoted by τ_{os} is the strongest topology on P such that (o)-convergence of sequences implies topological convergence. We can show that $F \subseteq P$ is τ_o -closed (τ_{os} -closed) set iff F includes (o)-limits of all order convergent nets (sequences) of elements of F. In spite of that, the (o)-convergence and τ_o -convergence of nets in (even complete) lattices need not coincide. Moreover, the fact that in a lattice L the order convergence of filters is topological does not imply the same statement for order convergence of nets as we have shown in [24].

For complete orthomodular lattices (including Boolean algebras) it has been shown in [24] and [4] that they are (o)-topological, i.e., order continuous lattices in which the order convergence of nets is identical with their convergence in the order topology iff they are atomic and (o)-continuous lattices.

We will be concerned with the above mentioned problem for complete atomic effect algebras and *net-theoretical convergences*, because convergences of nets play important task in the probability (or measure) theory on these structures [23].

Recall that an arbitrary system $G = (a_{\kappa})_{\kappa \in H}$ of not necessarily different elements of an effect algebra E is called \oplus -orthogonal if for every finite set $K \subseteq H$ the element $\bigoplus \{a_{\kappa} \mid \kappa \in K\}$ exists in E. If $\bigvee \{\bigoplus_{\kappa \in K} a_{\kappa} \mid K \subseteq H$ is finite} exists then we put $\bigoplus_{\kappa \in H} a_{\kappa} = \bigvee \{\bigoplus_{\kappa \in K} a_{\kappa} \mid K \subseteq H \text{ is finite}\}$. An Archimedean effect algebra E is called *separable* if every \oplus -orthogonal systems of elements of E is at most countable. More detailed these notions are discussed in [25].

Lemma 4. $\tau_o = \tau_{os}$ on every complete separable effect algebra E.

Proof. In view of definitions of τ_o and τ_{os} we have $\tau_o \subseteq \tau_{os}$, as for every sequence $(x_n)_{n=1}^{\infty}$ we have $x_n \xrightarrow{(o)} x$ implies $x_n \xrightarrow{\tau_o} x$. Let $F \subseteq E$ be a τ_{os} -closed set and $(x_{\alpha})_{\alpha \in \mathcal{E}}$ be a net of elements of E such that $x_{\alpha} \xrightarrow{(o)} x \in E$. Since E is complete and separable, by [20, Theorem 4.7] there are $\alpha_1 \leq \alpha_2 \leq \ldots$ in \mathcal{E} such that $x_{\alpha_n} \xrightarrow{(o)} x$, hence $x \in F$ and F is τ_o -closed. It follows that $\tau_{os} \subseteq \tau_o$ and hence $\tau_o = \tau_{os}$.

In the paper by an order topological lattice ((o)-topological, for short) we mean a lattice L whose order convergence of nets of elements coincides with convergence in the order topology τ_o and makes lattice operations continuous. For a lattice L a subset $D \subseteq L$ is called a *full sub-lattice* if for all $P, Q \subseteq D$ with $\bigvee P$ and $\bigwedge Q$ existing in L we have $\bigvee P, \bigwedge Q \in D$.

For net-theoretical convergence we will need some statements concerning the relativizations. Note that, in general, for a complete lattice L with order topology τ_o and its sublattice D with order topology τ_o^D , need not be $\tau_o^D = \tau_o \cap D$. Thus the fact that L is (o)-topological (in the sense of net convergences) does not imply that D is (o)-topological, even in the case when the convergence of filters is (o)-topological. All these facts have been shown in [24, Example 4.1].

Lemma 5. Let D be a sublattice of a lattice L and τ_o^D and τ_o be order topologies on D and L, respectively. Let D be τ_o -closed. Then:

(i) D is a full sublattice of L.

- (ii) If L is complete then D is complete as well and for $x_{\alpha}, x \in D$: $x_{\alpha} \xrightarrow{(o)} x \ (in \ D) \ iff \ x_{\alpha} \xrightarrow{(o)} x \ (in \ L).$ $x_{\alpha} \stackrel{\tau_o^D}{\to} x \ (in \ D) \ iff \ x_{\alpha} \stackrel{\tau_o}{\to} x \ (in \ L),$
- (iii) If L is complete and order topological then D is order topological.
- (iv) Let L be complete and $f: D \to L$ be a map such that for $x_{\alpha}, x \in D$: $f(x, D) \rightarrow f(x, b) \begin{pmatrix} 0 \\ 0 \end{pmatrix} f(x, b) \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (o)

$$\begin{array}{l} x_{\alpha} \stackrel{\hookrightarrow}{\to} x \ (in \ D) \implies f(x_{\alpha}) \stackrel{\hookrightarrow}{\to} f(x) \ (in \ L). \ Then \ for \ y_{\alpha}, y \in D. \\ y_{\alpha} \stackrel{\tau_{o}}{\to} y \implies f(y_{\alpha}) \stackrel{\tau_{o}}{\to} f(y). \end{array}$$

Proof. (i) Assume that $A \subseteq D$ and $\bigvee A$ exists in E. Set $x_{\alpha} = \bigvee \alpha$, for all finite $\alpha \subseteq A$. Then $x_{\alpha} \in D$ and $x_{\alpha} \uparrow \bigvee A$, which gives $x_{\alpha} \stackrel{\tau_o}{\to} \bigvee A$, hence $\bigvee A \in D$. Dually, if $B \subseteq D$ and $\bigwedge B$ exists in L then $\bigwedge B \in D$.

(ii) As by (i) for each $H \subseteq D$ we have $\bigvee H, \bigwedge H \in D$ we obtain that for $x_{\alpha} \in D, \ \alpha \in \mathcal{E}$ we have

$$\bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \ge \beta} x_{\alpha} = \bigwedge_{\beta \in \mathcal{E}} \bigvee_{\alpha \ge \beta} x_{\alpha} \text{ (in } L) \text{ iff } \bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \ge \beta} x_{\alpha} = \bigwedge_{\beta \in \mathcal{E}} \bigvee_{\alpha \ge \beta} x_{\alpha} \text{ (in } D)$$

which is equivalent to

$$x_{\alpha} \stackrel{(o)}{\to} x \text{ (in } L) \text{ iff } x_{\alpha} \stackrel{(o)}{\to} x \text{ (in } D)$$

as D and L are complete lattices. It follows that $F \subseteq D$ is τ_o^D -closed iff F is τ_o -closed. Thus for $U \subseteq D$ we have $U \in \tau_o^D$ iff $L \setminus (D \setminus U) \in \tau_o$ and hence for $x_{\alpha}, x \in D$ we have $x_{\alpha} \stackrel{\tau_o^D}{\to} x$ iff $x_{\alpha} \stackrel{\tau_o}{\to} x$ iff $\tau_o^D = \tau_o \cap D$.

(iii) This is a consequence of (ii).

(iv) We have to prove that f is a continuous map of (D, τ_o^D) into (L, τ_o) , since by (ii) for $y_{\alpha}, y \in D$ we have $y_{\alpha} \xrightarrow{\tau_{o}^{D}} y$ iff $y_{\alpha} \xrightarrow{\tau_{o}} y$. Assume that $F \subseteq L$ is τ_o -closed and $x_\alpha \in f^{-1}(F)$, $\alpha \in \mathcal{E}$. Then $f(x_\alpha) \in F$ and $x_\alpha \xrightarrow{(o)} x$ (in D) implies $f(x_{\alpha}) \xrightarrow{(o)} f(x)$ (in *L*) which gives $f(x) \in F$. Hence $x \in f^{-1}(F)$, which proves that $f^{-1}(F)$ is τ_o^D -closed.

Recall that a lattice effect algebra E is (o)-continuous if for $x_{\alpha}, x, y \in E$: $x_{\alpha} \uparrow x \implies x_{\alpha} \land y \uparrow x \land y, [8]$. In every (o)-continuous effect algebra if $x_{\alpha} \stackrel{(o)}{\to} x$ and $y_{\alpha} \xrightarrow{(o)} y$ then $x_{\alpha} \vee y_{\alpha} \xrightarrow{(o)} x \vee y$ and $x_{\alpha} \wedge y_{\alpha} \xrightarrow{(o)} x \wedge y$.

Theorem 6. In every complete (o)-continuous effect algebra E, for $x_{\alpha}, x, y \in$ E:

- (i) $x_{\alpha} \xrightarrow{\tau_{o}} x \implies x_{\alpha} \lor y \xrightarrow{\tau_{o}} x \lor y$ (ii) $x_{\alpha} \xrightarrow{\tau_{o}} x \implies x_{\alpha} \land y \xrightarrow{\tau_{o}} x \land y$ (iii) $x_{\alpha} \xrightarrow{\tau_{o}} x \implies x'_{\alpha} \xrightarrow{\tau_{o}} x'$

Proof. (i)–(iii) follow from (o)-continuity of E using Lemma 5, (iv).

4

Definition 7. A complete effect algebra E is (o)-topological (order topological) if (o)-convergence of nets of elements coincides with τ_o -convergence and E is (o)-continuous.

An element u of an effect algebra E is called *finite* if there is a finite sequence $\{p_1, \ldots, p_n\}$ of not necessarily different atoms of E such that $u = p_1 \oplus p_2 \oplus \cdots \oplus p_n$. If E is complete then for every $x \in E$ we have $x = \bigvee \{u \in E \mid u \leq x, u \text{ is finite}\}$, by [25, Theorem 3.1]. If E is complete atomic and (o)-continuous then the join of two finite elements is finite as well [21, Theorem 4.4].

Theorem 8. A complete atomic (o)-continuous effect algebra E is (o)-topological iff τ_o on E is Hausdorff.

Proof. (1) Assume that τ_o on E is Hausdorff and for $x, x_\alpha \in E$ let $x_\alpha \stackrel{\tau_o}{\to} x, \alpha \in \mathcal{E}$. If $a \in E$ is an atom such that $a \leq x$ then by Theorem 6 we have $x_\alpha \wedge a \stackrel{\tau_o}{\to} x \wedge a = a$. It follows that there is $\alpha_a \in \mathcal{E}$ such that $a \leq x_\alpha$ for all $\alpha \geq \alpha_a$, since otherwise there is a cofinal $\mathcal{E}' \subseteq \mathcal{E}$ such that $x_\alpha \wedge a \stackrel{\tau_o}{\to} 0, \alpha \in \mathcal{E}'$. By [16], we obtain that $x_\alpha \ominus a \stackrel{\tau_o}{\to} x \ominus a, \alpha \geq \alpha_a$. By the same argument, for an atom $b \leq x \ominus a$ there is $\alpha_b \geq \alpha_a$ such that for all $\alpha \geq \alpha_b$ we have $b \leq x_\alpha \ominus a$ which gives $a \oplus b \leq x_\alpha$. By induction, for every finite element $u = a_1 \oplus a_2 \oplus \cdots \oplus a_n \leq x$, where $a_1, \ldots, a_n \in E$ are not necessary different atoms, there is $\alpha_u \in \mathcal{E}$ such that for all $\alpha \geq \alpha_u$ we have $u \leq x_\alpha$ and hence $u \leq \bigwedge_{\alpha \geq \alpha_u} x_\alpha$. We obtain that $x \leq \bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \geq \beta} x_\alpha$, because $x = \bigvee \{u \in E \mid u \leq x, \alpha \in u \in \mathbb{N} \in \mathbb{N} \}$. Further, $x_\alpha \stackrel{\tau_o}{\to} x \Longrightarrow x'_\alpha \stackrel{\tau_o}{\to} x'$, which gives $x' \leq \bigvee_{\alpha \in \mathbb{N}} X'_\alpha$.

u is finite}. Further, $x_{\alpha} \xrightarrow{\tau_{\alpha}} x \implies x'_{\alpha} \xrightarrow{\tau_{\alpha}} x'$, which gives $x' \leq \bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \geq \beta} x'_{\alpha}$. By D'Morgan laws we obtain $\bigwedge_{\beta \in \mathcal{E}} \bigvee_{\alpha \geq \beta} x_{\alpha} \leq x$. We conclude that $x = \bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \geq \beta} x_{\alpha} =$

 $\bigwedge_{\beta \in \mathcal{E}} \bigvee_{\alpha \ge \beta} x_{\alpha} \text{ which is equivalent to } x_{\alpha} \xrightarrow{(o)} x, \text{ because}$

$$x \uparrow \bigwedge_{\alpha \ge \beta} x_{\alpha} \le x_{\alpha} \le \bigvee_{\alpha \ge \beta} x_{\alpha} \downarrow x$$
.

(2) If E is (o)-topological then τ_o on E is Hausdorff, as the (o)-limit of an (o)-convergent net is unique.

Theorem 9. Let E be a complete atomic (o)-topological effect algebra. Then

- (i) For every atom a of E the intervals [a, 1] and [0, a'] are τ_o -clopen sets.
- (ii) For every two finite elements $u, v \in E$ the intervals [u, 1], [0, u'] and [u, v'] are τ_o -clopen sets.
- (iii) Every $x \in E$ has a neighborhood base consisting of τ_o -clopen sets [u, v'], u, v finite.

Proof. (i) Evidently, [a, 1] and [0, a'] are τ_o -closed, since $\tau_i \subseteq \tau_o$. Let $x_\alpha \xrightarrow{\tau_o} x$, for $\alpha \in \mathcal{E}$ and $x \in [0, 1]$. By Theorem 6, $x_\alpha \wedge a \xrightarrow{\tau_o} x \wedge a = a$ and since τ_o is

Hausdorff, there is $\alpha_0 \in \mathcal{E}$ such that for all $\alpha \geq \alpha_0$ we have $x_\alpha \wedge a = a$, as otherwise $x_\alpha \wedge a \xrightarrow{\tau_o} 0$. It follows that $x_\alpha \in [a, 1]$, for all $\alpha \geq \alpha_0$, which gives that [a, 1] is open and hence also [0, a'] is open because $x \in [a, 1]$ iff $x' \in [0, a']$.

(ii) If $u = a_1 \oplus a_2 \oplus \cdots \oplus a_n$ where a_k are atoms of E and $x_\alpha \xrightarrow{\tau_o} x \in [u, 1]$ then $a_1 \wedge x_\alpha \xrightarrow{\tau_o} a_1 \wedge x = a_1$ and hence $a_1 \leq x_\alpha$ for all $\alpha \geq \alpha_1$. By [16, Theorem 3.3] for $\alpha \geq \alpha_1$ we have $x_\alpha \oplus a_1 \xrightarrow{\tau_o} x \oplus a_1$. Since $a_2 \leq x \oplus a_1$, there is $\alpha_2 \geq \alpha_1$ such that for $\alpha \geq \alpha_2$ we have $a_2 \leq x_\alpha \oplus a_1$ which gives $a_1 \oplus a_2 \leq x_\alpha$. By induction there is $\alpha_n \geq \alpha_k$, $k = 1, 2, \ldots, n-1$ such that for all $\alpha \geq \alpha_n$ we have $u \leq x_\alpha$. This proves that [u, 1] is τ_o -clopen. It follows that [0, u'] is τ_o -clopen for every finite $u \in E$. Thus for all finite $u, v \in E$ we have $[u, v'] = [u, 1] \cap [0, v']$ is τ_o -clopen.

(iii) Let $x \in E$ be arbitrary and $x \in \mathcal{U}(x) \in \tau_o$. Put $P_x = \{u \in E \mid u \leq x, u \text{ is finite}\}$ and $Q_{x'} = \{v \in E \mid v \leq x', v \text{ is finite}\}$. Then $x = \bigvee P_x$ and $x' = \bigvee Q_{x'}$. For every finite set $F \subseteq P_x \cup Q_{x'}$ we put $u_F = \bigvee (F \cap P_x)$ and $v_F = \bigvee (F \cap Q_{x'})$. Evidently $\mathcal{E} = \{F \subseteq P_x \cup Q_{x'} \mid F \text{ is finite}\}$ is directed by set inclusion and $u_F \uparrow x, v_F \uparrow x'$ which gives $v'_F \downarrow x$. Since $x \in \mathcal{U}(x) \in \tau_o$ there is $F_0 \in \mathcal{E}$ such that $[u_{F_0}, v'_{F_0}] \in \mathcal{U}(x)$ (see, e.g., Appendix B by H. Kirchheimová and Z. Riečanová, Proposition B.2.1 in [19]) and the interval $[u_{F_0}, v'_{F_0}]$ is τ_o -clopen, as u_{F_0} and v_{F_0} are finite elements of E ([21, Theorem 4.4]).

A direct product of a family $\{E_{\kappa} \mid \kappa \in H\}, H \neq \emptyset$, of effect algebras is the effect algebra $(\hat{E}; \hat{\oplus}, \hat{0}, \hat{1})$, where $\hat{E} = \prod \{E_{\kappa} \mid \kappa \in H\}$ is a Cartesian product and all operations $\hat{\oplus}, \hat{0}, \hat{1}$ are defined componentwise. It follows that also the partial order and lattice operations (for lattice ordered $E_{\kappa}, \kappa \in H$) in \hat{E} are defined componentwise.

Recall that effect algebras $(E; \oplus_E, 0_E, 1_E)$ and $(F; \oplus_F, 0_F, 1_F)$ are *isomorphic* if there exists a bijective map $\varphi : E \to F$ such that

- (i) $\varphi(1_E) = 1_F$,
- (ii) for all $a, b \in E$: $a \le b'$ iff $\varphi(a) \le \varphi(b')$,
 - in which case $\varphi(a \oplus_E b) = \varphi(a) \oplus_F \varphi(b)$.

We write $E \cong F$. Sometimes we identify E with $\varphi(E)$.

In every complete effect algebra E the center $C(E) = \{z \in E \mid z \land z' = 0 \text{ and } z \leftrightarrow x \text{ for all } x \in E\}$ is a complete Boolean algebra and $S(E) = \{z \in E \mid z \land z' = 0\}$ is a complete orthomodular lattice, and both are full sublattices of E, as we have shown in [11] and [25]. It follows that C(E) and S(E) are τ_o -closed subsets of E, since they evidently contain all (o)-limits of their (o)-convergent nets. In view of Lemma 5, (iii), C(E) and S(E) are (o)-topological. It follows that C(E) and S(E) are atomic and (o)-continuous [4, Lemma 2.2]. We have shown [18, Lemma 4.3] that then E can be decomposed into direct product of irreducible effect algebras.

Proposition 10. In every (o)-topological effect algebra E:

 $\mathbf{6}$

- (i) The center C(E) is a complete atomic Boolean algebra.
- (ii) The set of sharp elements S(E) is a complete atomic and (o)-continuous orthomodular lattice.
- (iii) $E \cong \prod\{[0,p] \mid p \text{ is an atom of } C(E)\}, [0,p] \text{ are irreducible effect algebras.}$

Note that the atomicity of C(E) and S(E) for a complete effect algebra E does not imply that E is atomic.

Example 11. Let $E = [0,1] \subseteq R$ with defined $a \oplus b = a+b$ iff $a+b \leq 1$. E is a complete MV-effect algebra, since every pair of elements of E are comparable and hence compatible. Clearly E has separated intervals which implies that τ_i on E is Hausdorff and hence $\tau_o = \tau_i$ is a compact Hausdorff topology on E (see [4] and [17]). Moreover, as E is complete, for $x_\alpha \in E$, $\alpha \in \mathcal{E}$ we have $x_\alpha \stackrel{(o)}{\to} x$ iff $x = \bigvee_{\beta \in \mathcal{E}} \bigwedge_{\alpha \geq \beta} x_\alpha = \bigwedge_{\beta \in \mathcal{E}} \bigvee_{\alpha \geq \beta} x_\alpha$ iff $x_\alpha \stackrel{\tau_o}{\to} x$, hence (o)-convergence is a topological convergence on E. Evidently E is (o)-continuous. Note that $C(E) = S(E) = \{0, 1\}.$

3. Compact (o)-topological effect algebras

Definition 12. A complete effect algebra is compact (o)-topological if E is (o)-topological and τ_o is compact.

The interval topology τ_i on a bounded lattice L is the topology for which an open base is generated by complements of finite unions of closed intervals. It follows that $\tau_i \subseteq \tau_o$. If τ_i is Hausdorff then $\tau_i = \tau_o$ (see [5]). By [7], τ_i on L is compact iff L is a complete lattice. Thus on every complete effect algebra E with Hausdorff interval topology the order topology τ_o is compact and Hausdorff. Nevertheless, such an effect algebra E need not be (o)-topological since E need not be (o)-continuous (see Example 20).

Definition 13. A bounded lattice L has separated intervals, if given any two disjoint intervals $[a, b], [c, d] \subseteq L$, the lattice L can be covered by a finite number of closed intervals each of which is disjoint with at least one of the intervals [a, b] and [c, d],

We have shown in [17, Lemma 2.2] that the interval topology on a complete lattice L is Hausdorff iff L has separated intervals.

Theorem 14. Every complete atomic (o)-continuous effect algebra with separated intervals is compact (o)-topological.

Proof. Since τ_i is Hausdorff, we have $\tau_o = \tau_i$ and hence τ_o is compact Hausdorff topology, as E is complete. By Theorem 8, E is (o)-topological.

Lemma 15. Let $\{E_{\kappa} \mid \kappa \in H\}$ be a family of complete lattice effect algebras.

- (i) $\widehat{E} = \prod \{ E_{\kappa} \mid \kappa \in H \}$ has separated intervals iff for every $\kappa \in H$, E_{κ} has separated intervals.
- (ii) τ_i on \widehat{E} is Hausdorff iff $\tau_i^{(\kappa)}$ is Hausdorff for all $\kappa \in H$.

Proof. For any $\hat{x} \in \widehat{E}$ we will use notation $\hat{x} = (x_{\kappa})_{\kappa \in H}$ where $x_{\kappa} \in E_{\kappa}, \kappa \in H$. (i) If $\hat{a}, \hat{b}, \hat{c}, \hat{d} \in \widehat{E}$ are such that $[\hat{a}, \hat{b}] \cap [\hat{c}, \hat{d}] = \emptyset$ then there exists $\kappa_0 \in H$

(1) If $a, b, c, a \in E$ are such that $[a, b] \cap [c, a] = \emptyset$ then there exists $\kappa_0 \in H$ such that $[a_{\kappa_0}, b_{\kappa_0}] \cap [c_{\kappa_0}, d_{\kappa_0}] = \emptyset$. Conversely, if for some $\kappa_0 \in H$ and for $a_{\kappa_0}, b_{\kappa_0}, c_{\kappa_0}, d_{\kappa_0} \in E_{\kappa_0}$. we have $[a_{\kappa_0}, b_{\kappa_0}] \cap [c_{\kappa_0}, d_{\kappa_0}] = \emptyset$ then, for all $\kappa \in H$, $\kappa \neq \kappa_0$, we put $a_{\kappa} = c_{\kappa} = 0$ and $b_{\kappa} = d_{\kappa} = 1$ which gives $[\hat{a}, \hat{b}] \cap [\hat{c}, \hat{d}] = \emptyset$. Thus we conclude that \hat{E} has separated intervals iff all E_{κ} have separated intervals. (ii) This follows by (i) and [17, Lemma 2.2]

Theorem 16. Every complete atomic distributive effect algebra E has separated intervals and it is compact (o)-topological with $\tau_o = \tau_i$.

Proof. By [22, Theorem 3.1 and Corollary 3.2] we have $E \cong \prod\{[0, p_{\kappa}] \mid \kappa \in H\}$ where $\{p_{\kappa} \mid \kappa \in H\}$ is the set of all atoms of C(E) and for every $\kappa \in H$ the interval $[0, p_{\kappa}]$ is either a finite chain or a distributive diamond $\{0_{\kappa}, a_{\kappa}, b_{\kappa}, p_{\kappa}\}$ in which $p_{\kappa} = 2a_{\kappa} = 2b_{\kappa}$, hence all $[0, p_{\kappa}]$ have separated intervals. Moreover, E is (o)-continuous. By Theorem 8, it follows that E is (o)-topological since, in view of Lemma 15, $\tau_o = \tau_i$ is compact Hausdorff. \Box

Corollary 17. Every complete atomic MV-effect algebra (MV-algebra) E has separated intervals and it is compact (o)-topological with $\tau_o = \tau_i$.

Note that statements of Theorem 16 and Corollary 17 need not be true for non-atomic E, as no non-atomic complete Boolean algebra is (o)-topological. On the other hand there are non-atomic MV-effect algebras which are compact (o)-topological with $\tau_o = \tau_i$ (see Example 11).

The set A_E of all atoms of an atomic effect algebra E is called *almost* orthogonal if for every $p \in A_E$ the set $\{a \in A_E \mid a \not\leq p'\}$ is finite.

Theorem 18. Let E be a compact (o)-topological atomic effect algebra and A_E is the set of all atoms of E. Then:

- (i) A_E is almost orthogonal.
- (ii) For every $p \in A_E$ there are finite elements u_1, u_2, \ldots, u_n of E such that $E = \left(\bigcup_{k=1}^n [u_k, 1]\right) \cup [0, p']$ and $[0, p'] \cap \left(\bigcup_{k=1}^n [u_k, 1]\right) = \emptyset$.

Proof. Set $A_E = \{p \in E \mid p \text{ is an atom of } E\}$. Let $p \in A_E$ and $x \in E, x \neq 0$. We have proved in [25, Theorem 3.1] that $x = \bigvee \{u \in E \mid u \leq x, u \text{ is finite}\}$. It follows that either $x \leq p'$, or there is a finite element $u \in E$ with $u \leq x$ and $u \not\leq p'$. Let $\mathcal{U} = \{u \in E \mid u \text{ is finite}\}$. Then $E = (\bigcup_{u \in \mathcal{U}, u \not\leq p'} [u, 1]) \cup [0, p']$. Because E is (o)-topological, the intervals [u, 1] and [0, p'] are τ_o -clopen, by Theorem 9. As E is compact there is a finite set $\{u_1, u_2, \ldots, u_n\} \subseteq \mathcal{U}, u_k \not\leq p'$ such that $E = (\bigcup_{k=1}^n [u_k, 1]) \cup [0, p']$. Evidently $(\bigcup_{k=1}^n [u_k, 1]) \cap [0, p'] = \emptyset$, as $u_k \not\leq p'$, for k = 1, ..., n. Moreover, if $a \in A_E$ and $a \not\leq p'$ then there is $k \in \{1, ..., n\}$ such that $a = u_k$. It follows that the set $\{a \in A_E \mid a \not\leq p'\}$ is finite.

Proposition 19. There are nonatomic complete MV-effect algebras which are compact (o)-topological with $\tau_o = \tau_i$ (see Example 11).

The next example shows that a complete atomic effect algebra E with compact Hausdorff order topology and $\tau_i = \tau_o$ need not be (compact) (o)-topological since E need not be (o)-continuous.

Example 20. Let *E* be a horizontal sum of *MV*-effect algebras M_1 and M_2 , which means that we identify least and greatest elements of M_1 and M_2 , respectively, and all pairs $a \in M_1 \setminus \{0, 1\}$ and $b \in M_2 \setminus \{0, 1\}$ are noncomparable. Further, let M_1 be an *MV*-effect algebra derived from a Boolean algebra with infinitely many atoms and $M_2 = \{0, a, 2a = 1\}$.

To show that E is not (o)-continuous, we put $A = \{p \in M_1 \mid p \text{ is an } a \text{ tom of } M_1\}$ and $u_\alpha = \bigvee \alpha$, for all finite sets $\alpha \subseteq A$. Then $u_\alpha \uparrow 1$, but $u_\alpha \land a = 0$ while $1 \land a = a$. It follows that E is not (o)-topological. Clearly E has separated intervals which gives that $\tau_o = \tau_i$ is Hausdorff compact topology, as E is complete.

Finally, the next example shows that an (o)-topological complete atomic modular effect algebra E need not be compact (o)-topological.

Example 21. Let the effect algebra E be a horizontal sum (0-1 pasting) of contably many distributive diamonds $E_{\kappa} = \{0_{\kappa}, a_{\kappa}, b_{\kappa}, 1_{\kappa} = 2a_{\kappa} = 2b_{\kappa}\} \kappa \in H$ and H be infinite. Evidently, τ_o is discrete and hence it is not compact since H is infinite.

References

- C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc.88 (1958), 467-490.
- [2] R. Cignoli, I. M. L. D'Ottaviano, D. Mundici: Algebraic Foundations of Many-valued Reasoning (Kluwer Academic Publishers, Dordrecht, 2000).
- [3] A. Dvurečenskij, S. Pulmannová: New Trends in Quantum Structures (Kluwer Academic Publishers, Dordrecht, Boston, London and Ister Science, Bratislava, 2000).
- M. Erné, Z. Riečanová: Order-topological complete orthomodular lattices. Topology and its Applications, 61 (1995), 215-217.
- [5] M. Erné, S. Weck: Order convergence in lattices. Rocky Mountains Journal of Mathematics, 10 (1980), 805-818.
- [6] D. Foulis, M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352.
- [7] O. Frink: Topology in lattices. Trans. Amer. Math. Soc. 51 (1942), 569-582.
- [8] G. Gierz et al.: A Compendium of Continuous Lattices (Springer Verlag, 1980).
- [9] G. Grätzer: General Laattice Theory, second edition (Birkhäuser Verlag Basel, Boston, Berlin, 1998).

- [10] U. Höhle, E. P. Klement (eds.): Non-classical Logics and their Applications to Fuzzy Subsets (Kluwer Academic Publishers, 1995).
- [11] G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
- [12] G. Kalmbach: Orthomodular Lattices (Academic Press London, 1983).
- [13] F. Kôpka: D-posets of fuzzy sets. Tatra Mt. Math. Publ. 1 (1992), 83-87.
- [14] F. Kôpka, F. Chovanec: Boolean D-posets Internat. J. Theor. Phys. 34 (1995), 1297-1302.
- [15] E. Pap: Null-Additive Set Functions (Kluwer Academic Publishers, Dordrecht-Boston-London and Ister Science, Bratislava, 1995).
- [16] Z. Riečanová: On order topological continuity of effect algebra operations, in Proceeddings of the 58th Workshop on General Algebra, Vienna University of Technology, June 3–6, 1999, Contributions to General Algebra **12** (Verlag-Johanes Heyn Klagenfurt, 2000, pp. 349-354).
- [17] Z. Riečanová: Lattice and quantum logics with separated intervals, atomiticity. Internat. J. Theor. Phys. 37 (1998), 191-197.
- [18] Z. Riečanová: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems, to appear, preprint,
 - www.elf.stuba.sk/~jenca/preprint/index.htm
- [19] B. Riečan, T. Neubrunn: Integral, Measure and Ordering (Kluwer Academic Publishers, Dordrecht, 1997).
- [20] Z. Riečanová: Lattice effect algebras with (o)-continuous faithful valuations. Fuzzy Sets and systems 124 (2001), 321-327.
- [21] Z. Riečanová: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511-1524
- [22] Z. Riečanová: *Distributive atomic effect algebras*. Demonstratio Mathematica **36** (2003), to appear.
- [23] Z. Riečanová: States, uniformities and metrics on lattice effect algebras. Internat. J. of Uncertainity, Fuzziness and Knowledge-Based Systems 10 Suppl. (December 2002), 125-133.
- [24] Z. Riečanová: Topological and order-topological orthomodular lattices. Bull Austral. Math. Soc. 47 (1993), 509-518.
- [25] Z. Riečanová: Orthogonal sets in effect algebras. Demonstratio Mathematica 34 (2001), 525-532.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL ENGINEERING AND INFOR-MATION TECHNOLOGY STU, SK-812 19 BRATISLAVA 1

E-mail address: zriecan@elf.stuba.sk