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ORDER-TOPOLOGICAL LATTICE EFFECT ALGEBRAS

7ZDENKA RIECANOVA

ABSTRACT. We study order convergence of nets in lattice effect algebras,
which generalized orthomodular lattices, including Boolean algebras and
MV-algebras in quantum or fuzzy probability theory. We show that in a
complete atomic (0)-continuous effect algebra E the order convergence of
nets is topological if and only if the order topology on E is Hausdorff. If
moreover F is distributive (e.g., MV-algebra) then the order topology is
compact Hausdorff.

1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras, or equivalent in some sense D-posets were introduced as
carriers of probability measure in quantum or fuzzy probability theory. Ele-
ments of these structures represent quantum effects or fuzzy events that may
be unsharp or imprecise ([6], [13]). Lattice ordered effect algebras generalize
orthomodular lattices [12] including Boolean algebras and MV-algebras [1],
[2], [10], [11], [14].

Definition 1. [6]. A structure (E;®,0,1) is called an effect-algebra if 0, 1
are two distinguished elements and @ is a partially defined binary operation
on P which satisfies the following conditions for any a,b,c € E:

(i) bda=a®bifa®b is defined,
(ii) (a@b)®c=a® (bDc) if one side is defined,
(iii) for every a € P there exists a unique b € P such that a ®b =1 (we
put ' =b),
(iv) if 1 ® a is defined then a = 0.

We often denote the effect algebra (F;®,0, 1) briefly by E. In every effect
algebra ¥ we can define the partial operation & and the partial order < by
putting

a<band bSa=ciff a ® cis defined and a ® ¢ = b.
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Since a & ¢ = a @ d implies ¢ = d, the © and the < are well defined. If £
with the defined partial order is a lattice (a complete lattice) then (E;@,0,1)
is called a lattice effect algebra (a complete effect algebra). If (E;@®,0,1) is
an effect algebra then (F;©,0,1) with the partial binary operation & defined
above is a D-poset, introduced by Kopka [13] as a new algebraic structure
of fuzzy sets, and vice versa, [14]. For more details on D-posets and efefct
algebras we refer the reader to [3], [15].

Definition 2. Elements a and b of a lattice effect algebra E are called com-
patible (written a < b) ifaVb=a® (b© (a AD)), [14].

On many places we will need the following statement proved in [11].

Lemma 3. Let E be a lattice effect algebra and A C E with \| A ezisting in
E. Ifb € E is compatible with every a € A then b — \/ A and bN (\/ A) =
V{aAb]|ac E}.

A lattice effect algebra is called modular or distributive if E as a lattice
has these properties [9]. A lattice effect algebra is called an MV-effect algebra
if every two elements a,b € E are compatible. It has been shown by Kopka
and Chovanec [14] that an MV-effect algebra E can be organized into an MV-
algebra and vice versa.

2. TOoPOLOGICAL EFFECT ALGEBRAS

Assume that (£; <) is a directed set and (P; <) is a poset. A net of elements
of P is denoted by (aa)ace. If an < ag for all o, f € € such that a < [ then
we write aq 1. If moreover a = \/{an | @ € £} we write a, T a. The meaning
of an | and a, | a is dual. For instance, a T uq < v | b means that u, < v,
for all @ € £ and uy T @ and v, | b. We will write b < a, T a if b < a, for all
a€ & and a, T a.

A net (aq)ace of elements of a poset (P; <) order converges ((o)-converges,
for short) to a point a € P if there are nets (uq)ace and (va)ace of elements
of P such that

aluy <aq<vyla.

(0)
)

We write a,, © a in P (or briefly a, —

The strongest (biggest) topology on a poset (P; <) such that (0)-convergence
of nets of elements of P implies topological convergence is called order topol-
ogy ((0)-topology) on P and it is denoted by 7,. The order sequence topology
denoted by 7,5 is the strongest topology on P such that (o0)-convergence of se-
quences implies topological convergence. We can show that F' C P is 7,-closed
(Tos-closed) set iff F' includes (0)-limits of all order convergent nets (sequences)
of elements of F. In spite of that, the (0)-convergence and 7,-convergence of
nets in (even complete) lattices need not coincide. Moreover, the fact that in
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a lattice L the order convergence of filters is topological does not imply the
same statement for order convergence of nets as we have shown in [24].

For complete orthomodular lattices (including Boolean algebras) it has been
shown in [24] and [4] that they are (o)-topological, i.e., order continuous lat-
tices in which the order convergence of nets is identical with their convergence
in the order topology iff they are atomic and (0)-continuous lattices.

We will be concerned with the above mentioned problem for complete
atomic effect algebras and net-theoretical convergences, because convergences
of nets play important task in the probability (or measure) theory on these
structures [23].

Recall that an arbitrary system G = (ay)xep of not necessarily different
elements of an effect algebra FE is called @-orthogonal if for every finite set
K C H the element @{ax | k € K} exists in E. If \/[{P,cxax | K € H
is finite} exists then we put @, .pax = V{P.cxax | K C H is finite}.
An Archimedean effect algebra F is called separable if every @-orthogonal
systems of elements of E is at most countable. More detailed these notions
are discussed in [25].

Lemma 4. 7, = 7,5 on every complete separable effect algebra E.

Proof. In view of definitions of 7, and 7,5 we have 7, C 7,5, as for every

sequence ()2, we have z,, (—O)> x implies x,, o 2. Let F C E be a 1ps-closed

set and (x4 )ace be a net of elements of E such that z,, (ﬁz z € E. Since F is

complete and separable, by [20, Theorem 4.7] there are a1 < a9 < ... in &

such that z,,, @ x, hence x € F and F' is 7,-closed. It follows that 7,5 C 7,
and hence 7, = 75. O

In the paper by an order topological lattice ((0)-topological, for short) we
mean a lattice L whose order convergence of nets of elements coincides with
convergence in the order topology 7, and makes lattice operations continuous.
For a lattice L a subset D C L is called a full sub-lattice if for all P,QQ C D
with \/ P and A @ existing in L we have \/ P, AQ € D.

For net-theoretical convergence we will need some statements concerning
the relativizations. Note that, in general, for a complete lattice L with or-
der topology 7, and its sublattice D with order topology 72, need not be
P = 7,n D. Thus the fact that L is (0)-topological (in the sense of net
convergences) does not imply that D is (o)-topological, even in the case when
the convergence of filters is (0)-topological. All these facts have been shown
in [24, Example 4.1].

Lemma 5. Let D be a sublattice of a lattice L and TP and 7, be order topolo-
gies on D and L, respectively. Let D be 7,-closed. Then:

(i) D is a full sublattice of L.
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(ii) If L is complete then D is complete as well and for xqo,x € D:
Ty @ o (in D) iff x4 © o (in L).

i T .
To > x (in D) iff xo, = (in L),
(iii) If L is complete and order topological then D is order topological.
(iv) Let L be complete and f: D — L be a map such that for xo,x € D:
To © & (in D) = f(za) ) f(z) (in L). Then for y,,y € D:
Yo =3y = fya) = f(y).
Proof. (i) Assume that A C D and \/ A exists in E. Set z, = \/ «a, for all
finite « € A. Then z, € D and z, T \/ A, which gives 2, ~% \/ 4, hence
\VV A€ D. Dually, if BC D and A B exists in L then A\ B € D.
(ii) As by (i) for each H C D we have \/ H, \ H € D we obtain that for
To €D, a € £ we have

\/ /\xa:/\ \/xa(inL)iff \/ /\a:a:/\ \/xa(inD)

peE azp peg a=p BeE azp BeE a=p

which is equivalent to

xa(—0)>a:(inL) iffxa(iza;(inD)

as D and L are complete lattices. It follows that F' C D is 7P-closed iff F is
To-closed. Thus for U C D we have U € 7P iff L\ (D \ U) € 7, and hence for

D
ZTa,T € D we have xalxiﬁxagxiffT(f):ToﬁD.
(iii) This is a consequence of (ii).
(iv) We have to prove that f is a continuous map of (D,7>) into (L, 7,),

since by (ii) for yo,y € D we have y, L, y iff yo 3 y. Assume that F C L
is 7o-closed and x, € f~Y(F), a € £&. Then f(z4) € F and x, “ (in D)
implies f(x) © f(z) (in L) which gives f(z) € F. Hence x € f~1(F), which
proves that f~(F) is 7°-closed. O
Recall that a lattice effect algebra E is (0)-continuous if for xzo,x,y € E:
To Tx = oAy T x Ay, [8]. In every (o)-continuous effect algebra if z,, “ e
(0) (0) (0)
and yo, — y then x4, Vys, = xVy and x4 A yo — T A Y.

Theorem 6. In every complete (0)-continuous effect algebra E, for xq,x,y €
E:

(i) 2o B2 = 2, Vy 2z Vy

(i) 2o 20 = 2o Ay 2T Ay

e T T
(ii) zq 22 = 2, 22

Proof. (1)—(iii) follow from (0)-continuity of F using Lemma 5, (iv). O
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Definition 7. A complete effect algebra E is (0)-topological (order topological)
if (0)-convergence of nets of elements coincides with T,-convergence and E is
(0)-continuous.

An element u of an effect algebra E is called finite if there is a finite sequence
{p1,...,pn} of not necessarily different atoms of E such that u = p; @ ps @
-+ @ pp. If E is complete then for every € F we have z = \/{u € F' | u < z,
u is finite}, by [25, Theorem 3.1]. If E is complete atomic and (0)-continuous
then the join of two finite elements is finite as well [21, Theorem 4.4].

Theorem 8. A complete atomic (0)-continuous effect algebra E is (0)-topo-
logical iff 7, on E is Hausdorff.

Proof. (1) Assume that 7, on E is Hausdorff and for z,z, € E let z, g,
a € & If a € Eis an atom such that ¢ < x then by Theorem 6 we have
Toa Aa 2 xAa=a. It follows that there is o, € € such that a < z, for all
a > ag, since otherwise there is a cofinal £ C &€ such that 2o Aa 30, a € £'.
By [16], we obtain that z, © a % £ © a, a > a,. By the same argument,
for an atom b < z © a there is ap > a4 such that for all & > o we have
b < x4 © a which gives a b < x,. By induction, for every finite element
u=ay Pay®- - a, <x, where a,...,a, € E are not necessary different
atoms, there is a, € & such that for all o > «, we have u < xz, and hence
u< A z, We obtain that x < \/ A z,, because z = \/{u € E | u < z,

a>oy, pel a>p
u is finite}. Further, z, 2 x = z/, 2 2/, which gives 2/ < \/ A z/,. By
pe€ a>p
D’Morgan laws we obtain A\ \/ z, < 2. We conclude that z = \/ A z, =
BEE a>p BEE a>p

/\ 'V 2o which is equivalent to z4 ©) x, because
BeE a>p

] /\ZHXSIQMS \/ihxlx~

azf azf

(2) If E is (o)-topological then 7, on E is Hausdorff, as the (0)-limit of an
(0)-convergent net is unique. O

Theorem 9. Let E be a complete atomic (0)-topological effect algebra. Then

(i) For every atom a of E the intervals [a,1] and [0,a] are To-clopen sets.
(ii) For every two finite elements u,v € E the intervals [u, 1], [0,u'] and
[u,v'] are 1,-clopen sets.
(iii) Everyx € E has a neighborhood base consisting of 7,-clopen sets [u,v'],
u,v finite.

Proof. (i) Evidently, [a,1] and [0,a] are 7,-closed, since 7; C 7,. Let 24 -3 1,
for a € £ and x € [0,1]. By Theorem 6, 2, A a % 2 A a = a and since 7, is
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Hausdorff, there is ag € £ such that for all > oy we have xo, A a = a, as
otherwise z4 A a =% 0. It follows that z, € [a,1], for all @ > ag, which gives
that [a, 1] is open and hence also [0, a’] is open because = € [a, 1] iff 2’ € [0,d].

(ii) If u = a1 ®ags®- - -®a,, where ai, are atoms of E and x,, Bre [u, 1] then
a1 Ao ~% a1 Ax = a; and hence a1 < z, for all @ > ay. By [16, Theorem 3.3]
for o > a1 we have 2,9 a1 =2 xS aq. Since as < xS ai, there is as > aq such
that for a > as we have a9 < x, © a1 which gives a1 ® as < x4. By induction
there is o, > g, k=1,2,...,n — 1 such that for all @ > «a,, we have u < z,,.
This proves that [u, 1] is 7,-clopen. It follows that [0, 4] is 7,-clopen for every
finite w € E. Thus for all finite u,v € E we have [u,v'] = [u,1] N [0,v'] is
To-clopen.

(iii) Let x € E be arbitrary and z € U(z) € 7,. Put P, ={u € E |u < z,
u is finite} and Q = {v € E | v < 2, v is finite}. Then z = \/ P, and
¥’ = \/ Q. For every finite set F' C P, U Q. we put up = \/(F N P,) and
vp = V(FNQy). Evidently &€ = {F C P,UQ, | F is finite} is directed by set
inclusion and up 1 z, vp T 2’ which gives v}, | z. Since x € U(z) € 7, there is
Fy € € such that [ug,, v, ] € U(z) (see, e.g., Appendix B by H. Kirchheimova
and Z. Riecanovd, Proposition B.2.1 in [19]) and the interval [ug,, vp,] is To-
clopen, as up, and vg, are finite elements of £ ([21, Theorem 4.4]). O

A direct product of a family {Ey | K € H}, H # 0, of effect algebras is the
effect algebra (E;é,0,1), where E = [[{E. | k € H} is a Cartesian product
and all operations &, 0, 1 are defined componentwise. It follows that also the
partial order and lattice operations (for lattice ordered E,, k € H) in E are
defined componentwise.

Recall that effect algebras (E;®pg,0g, 1) and (F;®p,0p, 1p) are isomor-
phic if there exists a bijective map ¢ : E — F such that

(ii) for all a,b € E: a <V iff p(a) < p(V),
in which case ¢(a ®g b) = p(a) DF ©(b).
We write £ = F. Sometimes we identify £ with ¢(E).

In every complete effect algebra E the center C(E) ={z€ E| 2Nz =0
and z < z for all x € E} is a complete Boolean algebra and S(E) = {z € F'|
z Az = 0} is a complete orthomodular lattice, and both are full sublattices
of E, as we have shown in [11] and [25]. It follows that C(E) and S(E) are
To-closed subsets of F, since they evidently contain all (0)-limits of their (o)-
convergent nets. In view of Lemma 5, (iii), C(F) and S(E) are (0)-topological.
It follows that C'(E) and S(E) are atomic and (o)-continuous [4, Lemma 2.2].
We have shown [18, Lemma 4.3] that then E can be decomposed into direct
product of irreducible effect algebras.

Proposition 10. In every (o)-topological effect algebra E:
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(i) The center C(E) is a complete atomic Boolean algebra.
(ii) The set of sharp elements S(E) is a complete atomic and (0)-continuous
orthomodular lattice.
(iii) £ = [[{[0,p] | p is an atom of C(E)}, [0,p] are irreducible effect

algebras.

Note that the atomicity of C(E) and S(F) for a complete effect algebra E
does not imply that F is atomic.

Example 11. Let E = [0,1] C R with defined a®b = a+b iffa+b<1. Eisa
complete MV-effect algebra, since every pair of elements of E are comparable
and hence compatible. Clearly E has separated intervals which implies that T;
on E is Hausdorff and hence 1, = 7; is a compact Hausdorff topology on E (see

[4] and [17]). Moreover, as E is complete, for zo, € E, a € £ we have x4 “ e

iff © = Vgee NazpTa = Ngeg VaspTa iff za 2% 2, hence (0)-convergence
is a topological convergence on E. FEuvidently E is (0)-continuous. Note that
C(FE)=S(FE)={0,1}.

3. COMPACT (0)-TOPOLOGICAL EFFECT ALGEBRAS

Definition 12. A complete effect algebra is compact (0)-topological if E is
(0)-topological and T, is compact.

The interval topology T; on a bounded lattice L is the topology for which
an open base is generated by complements of finite unions of closed intervals.
It follows that 7, C 7,. If 7; is Hausdorff then , = 7, (see [5]). By [7],
7; on L is compact iff L is a complete lattice. Thus on every complete effect
algebra E with Hausdorff interval topology the order topology T, is compact and
Hausdorff. Nevertheless, such an effect algebra E need not be (0)-topological
since E need not be (0)-continuous (see Example 20).

Definition 13. A bounded lattice L has separated intervals, if given any two
disjoint intervals [a, b], [c,d] C L, the lattice L can be covered by a finite number
of closed intervals each of which is disjoint with at least one of the intervals
[a,b] and [c,d],

We have shown in [17, Lemma 2.2] that the interval topology on a complete
lattice L is Hausdorff iff L has separated intervals.

Theorem 14. Every complete atomic (0)-continuous effect algebra with sep-
arated intervals is compact (0)-topological.

Proof. Since 7; is Hausdorff, we have 7, = 7; and hence 7, is compact Hausdorff
topology, as E is complete. By Theorem 8, E is (0)-topological.. O

Lemma 15. Let {E; | k € H} be a family of complete lattice effect algebras.
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(i) E = [I[{E« | k € H} has separated intervals iff for every x € H, E,
has separated intervals.

(ii) 7; on E is Hausdorff iff Ti(ﬁ) is Hausdorff for all k € H.

Proof. For any & € E we will use notation & = (Tx)wem where z, € E, k € H.

(i) If @,b,¢,d € E are such that [a,b] N [é,d] = 0 then there exists ko € H
such that [axg,bky] N [Crg, diy] = 0. Conversely, if for some kg € H and for
Aros Do Crigy iy € Ery. We have [awg, big] N [Cry, diy) = 0 then, for all k € H,
K # Ko, we put ax = ¢x = 0 and b, = d,, = 1 which gives [a, b]N[¢,d] = 0. Thus
we conclude that E has separated intervals iff all E,. have separated intervals.

(ii) This follows by (i) and [17, Lemma 2.2] O

Theorem 16. Every complete atomic distributive effect algebra E has sepa-
rated intervals and it is compact (0)-topological with T, = ;.

Proof. By [22, Theorem 3.1 and Corollary 3.2] we have E = [[{[0,px] | k € H}
where {p, | K € H} is the set of all atoms of C(E) and for every x € H the
interval [0, p] is either a finite chain or a distributive diamond {0y, ax, by, Px }
in which p, = 2a, = 2by, hence all [0, p,| have separated intervals. Moreover,
E is (o)-continuous. By Theorem 8, it follows that E is (0)-topological since,
in view of Lemma 15, 7, = 7; is compact Hausdorff. O

Corollary 17. Every complete atomic MV-effect algebra (MV-algebra) E has
separated intervals and it is compact (0)-topological with T, = ;.

Note that statements of Theorem 16 and Corollary 17 need not be true for
non-atomic F, as no non-atomic complete Boolean algebra is (0)-topological.
On the other hand there are non-atomic MV-effect algebras which are compact
(0)-topological with 7, = 7; (see Example 11).

The set Ap of all atoms of an atomic effect algebra E is called almost
orthogonal if for every p € Ag the set {a € Ag | a £ p'} is finite.

Theorem 18. Let E be a compact (0)-topological atomic effect algebra and
Ap is the set of all atoms of E. Then:

(i) Ag is almost orthogonal.
(ii) For every p € Ag there are finite elements ui,ua,...,u, of E such

that E = (Up_ [ur, 1]) U[0,p'] and [0,p'] N (Uj_y [ux, 1]) = 0.

Proof. Set Ap ={p € E | pisan atom of E}. Let p € Ag and z € E, z # 0.
We have proved in [25, Theorem 3.1] that x = \/{u € E' | u < x, u is finite}.
It follows that either < p/, or there is a finite element v € E with v < z and
ugyp. Let Y ={u € E | uis finite}. Then F = (Uueu’u@/ [, 1]) U [0, p'].
Because F is (o0)-topological, the intervals [u, 1] and [0, p'] are 7,-clopen, by
Theorem 9. As F is compact there is a finite set {u1,ug,...,un} CU, ur L p’
such that £ = (Up_;[uk,1]) U [0,p]. Evidently (Up_;[uk,1]) N [0,p] = 0,
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as up £ p', for k = 1,...,n. Moreover, if a € Ag and a £ p’ then there is
k € {1,...,n} such that a = ug. It follows that the set {a € Ap | a £ p'} is
finite. O

Proposition 19. There are nonatomic complete MV-effect algebras which are
compact (0)-topological with T, = 7; (see Example 11).

The next example shows that a complete atomic effect algebra E with com-
pact Hausdorff order topology and T; = T, need not be (compact) (0)-topological
since E need not be (0)-continuous.

Example 20. Let E be a horizontal sum of MV-effect algebras My and Mo,
which means that we identify least and greatest elements of My and Ms, re-
spectively, and all pairs a € M1\ {0,1} and b € M2\ {0,1} are noncomparable.
Further, let My be an MV-effect algebra derived from a Boolean algebra with
infinitely many atoms and Ma = {0,a,2a = 1}.

To show that E is not (o)-continuous, we put A = {p € My | p is an
atom of M1} and u, = \/ «, for all finite sets o« C A. Then us T 1, but
uq ANa =0 while 1 Na = a. It follows that E is not (0)-topological. Clearly E
has separated intervals which gives that 7, = 7; is Hausdorff compact topology,
as E is complete.

Finally, the next example shows that an (0)-topological complete atomic
modular effect algebra E need not be compact (0)-topological.

Example 21. Let the effect algebra E be a horizontal sum (0-1 pasting) of
contably many distributive diamonds Ey = {0y, ax, by, 1., = 2a,, = 2b.} K € H
and H be infinite. Evidently, T, is discrete and hence it is not compact since
H is infinite.
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