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ORDER-TOPOLOGICAL LATTICE EFFECT ALGEBRAS

ZDENKA RIEČANOVÁ

Abstract. We study order convergence of nets in lattice effect algebras,
which generalized orthomodular lattices, including Boolean algebras and
MV-algebras in quantum or fuzzy probability theory. We show that in a
complete atomic (o)-continuous effect algebra E the order convergence of
nets is topological if and only if the order topology on E is Hausdorff. If
moreover E is distributive (e.g., MV-algebra) then the order topology is
compact Hausdorff.

1. Introduction and basic definitions

Effect algebras, or equivalent in some sense D-posets were introduced as
carriers of probability measure in quantum or fuzzy probability theory. Ele-
ments of these structures represent quantum effects or fuzzy events that may
be unsharp or imprecise ([6], [13]). Lattice ordered effect algebras generalize
orthomodular lattices [12] including Boolean algebras and MV-algebras [1],
[2], [10], [11], [14].

Definition 1. [6]. A structure (E;⊕, 0, 1) is called an effect-algebra if 0, 1
are two distinguished elements and ⊕ is a partially defined binary operation
on P which satisfies the following conditions for any a, b, c ∈ E:

(i) b⊕ a = a⊕ b if a⊕ b is defined,
(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,
(iii) for every a ∈ P there exists a unique b ∈ P such that a ⊕ b = 1 (we

put a′ = b),
(iv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect
algebra E we can define the partial operation ª and the partial order ≤ by
putting

a ≤ b and bª a = c iff a⊕ c is defined and a⊕ c = b.

1991 Mathematics Subject Classification. Primary 06B30; secondary 06D15, 06D35,
81P10.

Key words and phrases. Lattice effect algebra, order convergence, order topological effect
algebras.

This work was supported by grant G-1/0266/03 of MŠ SR, Slovakia.
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Since a ⊕ c = a ⊕ d implies c = d, the ª and the ≤ are well defined. If E
with the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1)
is called a lattice effect algebra (a complete effect algebra). If (E;⊕, 0, 1) is
an effect algebra then (E;ª, 0, 1) with the partial binary operation ª defined
above is a D-poset , introduced by Kôpka [13] as a new algebraic structure
of fuzzy sets, and vice versa, [14]. For more details on D-posets and efefct
algebras we refer the reader to [3], [15].

Definition 2. Elements a and b of a lattice effect algebra E are called com-
patible (written a ↔ b) if a ∨ b = a⊕ (bª (a ∧ b)), [14].

On many places we will need the following statement proved in [11].

Lemma 3. Let E be a lattice effect algebra and A ⊆ E with
∨

A existing in
E. If b ∈ E is compatible with every a ∈ A then b ↔ ∨

A and b ∧ (
∨

A) =∨{a ∧ b | a ∈ E}.
A lattice effect algebra is called modular or distributive if E as a lattice

has these properties [9]. A lattice effect algebra is called an MV-effect algebra
if every two elements a, b ∈ E are compatible. It has been shown by Kôpka
and Chovanec [14] that an MV-effect algebra E can be organized into an MV-
algebra and vice versa.

2. Topological Effect Algebras

Assume that (E ;≺) is a directed set and (P ;≤) is a poset. A net of elements
of P is denoted by (aα)α∈E . If aα ≤ aβ for all α, β ∈ E such that α ≺ β then
we write aα ↑. If moreover a =

∨{aα | α ∈ E} we write aα ↑ a. The meaning
of aα ↓ and aα ↓ a is dual. For instance, a ↑ uα ≤ vα ↓ b means that uα ≤ vα

for all α ∈ E and uα ↑ a and vα ↓ b. We will write b ≤ aα ↑ a if b ≤ aα for all
α ∈ E and aα ↑ a.

A net (aα)α∈E of elements of a poset (P ;≤) order converges ((o)-converges,
for short) to a point a ∈ P if there are nets (uα)α∈E and (vα)α∈E of elements
of P such that

a ↑ uα ≤ aα ≤ vα ↓ a .

We write aα
(o)→ a in P (or briefly aα

(o)→ a).
The strongest (biggest) topology on a poset (P ;≤) such that (o)-convergence

of nets of elements of P implies topological convergence is called order topol-
ogy ((o)-topology) on P and it is denoted by τo. The order sequence topology
denoted by τos is the strongest topology on P such that (o)-convergence of se-
quences implies topological convergence. We can show that F ⊆ P is τo-closed
(τos-closed) set iff F includes (o)-limits of all order convergent nets (sequences)
of elements of F . In spite of that, the (o)-convergence and τo-convergence of
nets in (even complete) lattices need not coincide. Moreover, the fact that in
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a lattice L the order convergence of filters is topological does not imply the
same statement for order convergence of nets as we have shown in [24].

For complete orthomodular lattices (including Boolean algebras) it has been
shown in [24] and [4] that they are (o)-topological, i.e., order continuous lat-
tices in which the order convergence of nets is identical with their convergence
in the order topology iff they are atomic and (o)-continuous lattices.

We will be concerned with the above mentioned problem for complete
atomic effect algebras and net-theoretical convergences, because convergences
of nets play important task in the probability (or measure) theory on these
structures [23].

Recall that an arbitrary system G = (aκ)κ∈H of not necessarily different
elements of an effect algebra E is called ⊕-orthogonal if for every finite set
K ⊆ H the element

⊕{aκ | κ ∈ K} exists in E. If
∨{⊕κ∈K aκ | K ⊆ H

is finite} exists then we put
⊕

κ∈H aκ =
∨{⊕κ∈K aκ | K ⊆ H is finite}.

An Archimedean effect algebra E is called separable if every ⊕-orthogonal
systems of elements of E is at most countable. More detailed these notions
are discussed in [25].

Lemma 4. τo = τos on every complete separable effect algebra E.

Proof. In view of definitions of τo and τos we have τo ⊆ τos, as for every

sequence (xn)∞n=1 we have xn
(o)→ x implies xn

τo→ x. Let F ⊆ E be a τos-closed

set and (xα)α∈E be a net of elements of E such that xα
(o)→ x ∈ E. Since E is

complete and separable, by [20, Theorem 4.7] there are α1 ≤ α2 ≤ . . . in E
such that xαn

(o)→ x, hence x ∈ F and F is τo-closed. It follows that τos ⊆ τo

and hence τo = τos. ¤

In the paper by an order topological lattice ((o)-topological, for short) we
mean a lattice L whose order convergence of nets of elements coincides with
convergence in the order topology τo and makes lattice operations continuous.
For a lattice L a subset D ⊆ L is called a full sub-lattice if for all P, Q ⊆ D
with

∨
P and

∧
Q existing in L we have

∨
P,

∧
Q ∈ D.

For net-theoretical convergence we will need some statements concerning
the relativizations. Note that, in general, for a complete lattice L with or-
der topology τo and its sublattice D with order topology τD

o , need not be
τD
o = τo ∩ D. Thus the fact that L is (o)-topological (in the sense of net

convergences) does not imply that D is (o)-topological, even in the case when
the convergence of filters is (o)-topological. All these facts have been shown
in [24, Example 4.1].

Lemma 5. Let D be a sublattice of a lattice L and τD
o and τo be order topolo-

gies on D and L, respectively. Let D be τo-closed. Then:
(i) D is a full sublattice of L.
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(ii) If L is complete then D is complete as well and for xα, x ∈ D:

xα
(o)→ x (in D) iff xα

(o)→ x (in L).

xα
τD
o→ x (in D) iff xα

τo→ x (in L),
(iii) If L is complete and order topological then D is order topological.
(iv) Let L be complete and f : D → L be a map such that for xα, x ∈ D:

xα
(o)→ x (in D) =⇒ f(xα)

(o)→ f(x) (in L). Then for yα, y ∈ D:
yα

τo→ y =⇒ f(yα) τo→ f(y).

Proof. (i) Assume that A ⊆ D and
∨

A exists in E. Set xα =
∨

α, for all
finite α ⊆ A. Then xα ∈ D and xα ↑ ∨

A, which gives xα
τo→ ∨

A, hence∨
A ∈ D. Dually, if B ⊆ D and

∧
B exists in L then

∧
B ∈ D.

(ii) As by (i) for each H ⊆ D we have
∨

H,
∧

H ∈ D we obtain that for
xα ∈ D, α ∈ E we have

∨

β∈E

∧

α≥β

xα =
∧

β∈E

∨

α≥β

xα (in L) iff
∨

β∈E

∧

α≥β

xα =
∧

β∈E

∨

α≥β

xα (in D)

which is equivalent to

xα
(o)→ x (in L) iff xα

(o)→ x (in D)

as D and L are complete lattices. It follows that F ⊆ D is τD
o -closed iff F is

τo-closed. Thus for U ⊆ D we have U ∈ τD
o iff L \ (D \ U) ∈ τo and hence for

xα, x ∈ D we have xα
τD
o→ x iff xα

τo→ x iff τD
o = τo ∩D.

(iii) This is a consequence of (ii).
(iv) We have to prove that f is a continuous map of (D, τD

o ) into (L, τo),

since by (ii) for yα, y ∈ D we have yα
τD
o→ y iff yα

τo→ y. Assume that F ⊆ L

is τo-closed and xα ∈ f−1(F ), α ∈ E . Then f(xα) ∈ F and xα
(o)→ x (in D)

implies f(xα)
(o)→ f(x) (in L) which gives f(x) ∈ F . Hence x ∈ f−1(F ), which

proves that f−1(F ) is τD
o -closed. ¤

Recall that a lattice effect algebra E is (o)-continuous if for xα, x, y ∈ E:

xα ↑ x =⇒ xα∧y ↑ x∧y, [8]. In every (o)-continuous effect algebra if xα
(o)→ x

and yα
(o)→ y then xα ∨ yα

(o)→ x ∨ y and xα ∧ yα
(o)→ x ∧ y.

Theorem 6. In every complete (o)-continuous effect algebra E, for xα, x, y ∈
E:

(i) xα
τo→ x =⇒ xα ∨ y

τo→ x ∨ y

(ii) xα
τo→ x =⇒ xα ∧ y

τo→ x ∧ y

(iii) xα
τo→ x =⇒ x′α

τo→ x′

Proof. (i)–(iii) follow from (o)-continuity of E using Lemma 5, (iv). ¤
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Definition 7. A complete effect algebra E is (o)-topological (order topological)
if (o)-convergence of nets of elements coincides with τo-convergence and E is
(o)-continuous.

An element u of an effect algebra E is called finite if there is a finite sequence
{p1, . . . , pn} of not necessarily different atoms of E such that u = p1 ⊕ p2 ⊕
· · · ⊕ pn. If E is complete then for every x ∈ E we have x =

∨{u ∈ E | u ≤ x,
u is finite}, by [25, Theorem 3.1]. If E is complete atomic and (o)-continuous
then the join of two finite elements is finite as well [21, Theorem 4.4].

Theorem 8. A complete atomic (o)-continuous effect algebra E is (o)-topo-
logical iff τo on E is Hausdorff.

Proof. (1) Assume that τo on E is Hausdorff and for x, xα ∈ E let xα
τo→ x,

α ∈ E . If a ∈ E is an atom such that a ≤ x then by Theorem 6 we have
xα ∧ a

τo→ x ∧ a = a. It follows that there is αa ∈ E such that a ≤ xα for all
α ≥ αa, since otherwise there is a cofinal E ′ ⊆ E such that xα ∧ a

τo→ 0, α ∈ E ′.
By [16], we obtain that xα ª a

τo→ x ª a, α ≥ αa. By the same argument,
for an atom b ≤ x ª a there is αb ≥ αa such that for all α ≥ αb we have
b ≤ xα ª a which gives a ⊕ b ≤ xα. By induction, for every finite element
u = a1 ⊕ a2 ⊕ · · · ⊕ an ≤ x, where a1, . . . , an ∈ E are not necessary different
atoms, there is αu ∈ E such that for all α ≥ αu we have u ≤ xα and hence
u ≤ ∧

α≥αu

xα. We obtain that x ≤ ∨
β∈E

∧
α≥β

xα, because x =
∨{u ∈ E | u ≤ x,

u is finite}. Further, xα
τo→ x =⇒ x′α

τo→ x′, which gives x′ ≤ ∨
β∈E

∧
α≥β

x′α. By

D’Morgan laws we obtain
∧

β∈E

∨
α≥β

xα ≤ x. We conclude that x =
∨

β∈E

∧
α≥β

xα =

∧
β∈E

∨
α≥β

xα which is equivalent to xα
(o)→ x, because

x ↑
∧

α≥β

xα ≤ xα ≤
∨

α≥β

xα ↓ x .

(2) If E is (o)-topological then τo on E is Hausdorff, as the (o)-limit of an
(o)-convergent net is unique. ¤

Theorem 9. Let E be a complete atomic (o)-topological effect algebra. Then
(i) For every atom a of E the intervals [a, 1] and [0, a′] are τo-clopen sets.
(ii) For every two finite elements u, v ∈ E the intervals [u, 1], [0, u′] and

[u, v′] are τo-clopen sets.
(iii) Every x ∈ E has a neighborhood base consisting of τo-clopen sets [u, v′],

u, v finite.

Proof. (i) Evidently, [a, 1] and [0, a′] are τo-closed, since τi ⊆ τo. Let xα
τo→ x,

for α ∈ E and x ∈ [0, 1]. By Theorem 6, xα ∧ a
τo→ x ∧ a = a and since τo is
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Hausdorff, there is α0 ∈ E such that for all α ≥ α0 we have xα ∧ a = a, as
otherwise xα ∧ a

τo→ 0. It follows that xα ∈ [a, 1], for all α ≥ α0, which gives
that [a, 1] is open and hence also [0, a′] is open because x ∈ [a, 1] iff x′ ∈ [0, a′].

(ii) If u = a1⊕a2⊕· · ·⊕an where ak are atoms of E and xα
τo→ x ∈ [u, 1] then

a1∧xα
τo→ a1∧x = a1 and hence a1 ≤ xα for all α ≥ α1. By [16, Theorem 3.3]

for α ≥ α1 we have xαªa1
τo→ xªa1. Since a2 ≤ xªa1, there is α2 ≥ α1 such

that for α ≥ α2 we have a2 ≤ xαª a1 which gives a1⊕ a2 ≤ xα. By induction
there is αn ≥ αk, k = 1, 2, . . . , n− 1 such that for all α ≥ αn we have u ≤ xα.
This proves that [u, 1] is τo-clopen. It follows that [0, u′] is τo-clopen for every
finite u ∈ E. Thus for all finite u, v ∈ E we have [u, v′] = [u, 1] ∩ [0, v′] is
τo-clopen.

(iii) Let x ∈ E be arbitrary and x ∈ U(x) ∈ τo. Put Px = {u ∈ E | u ≤ x,
u is finite} and Qx′ = {v ∈ E | v ≤ x′, v is finite}. Then x =

∨
Px and

x′ =
∨

Qx′ . For every finite set F ⊆ Px ∪ Qx′ we put uF =
∨

(F ∩ Px) and
vF =

∨
(F ∩Qx′). Evidently E = {F ⊆ Px∪Qx′ | F is finite} is directed by set

inclusion and uF ↑ x, vF ↑ x′ which gives v′F ↓ x. Since x ∈ U(x) ∈ τo there is
F0 ∈ E such that [uF0 , v

′
F0

] ∈ U(x) (see, e.g., Appendix B by H. Kirchheimová
and Z. Riečanová, Proposition B.2.1 in [19]) and the interval [uF0 , v

′
F0

] is τo-
clopen, as uF0 and vF0 are finite elements of E ([21, Theorem 4.4]). ¤

A direct product of a family {Eκ | κ ∈ H}, H 6= ∅, of effect algebras is the
effect algebra (Ê; ⊕̂, 0̂, 1̂), where Ê =

∏{Eκ | κ ∈ H} is a Cartesian product
and all operations ⊕̂, 0̂, 1̂ are defined componentwise. It follows that also the
partial order and lattice operations (for lattice ordered Eκ, κ ∈ H) in Ê are
defined componentwise.

Recall that effect algebras (E;⊕E , 0E , 1E) and (F ;⊕F , 0F , 1F ) are isomor-
phic if there exists a bijective map ϕ : E → F such that

(i) ϕ(1E) = 1F ,
(ii) for all a, b ∈ E: a ≤ b′ iff ϕ(a) ≤ ϕ(b′),

in which case ϕ(a⊕E b) = ϕ(a)⊕F ϕ(b).

We write E ∼= F . Sometimes we identify E with ϕ(E).
In every complete effect algebra E the center C(E) = {z ∈ E | z ∧ z′ = 0

and z ↔ x for all x ∈ E} is a complete Boolean algebra and S(E) = {z ∈ E |
z ∧ z′ = 0} is a complete orthomodular lattice, and both are full sublattices
of E, as we have shown in [11] and [25]. It follows that C(E) and S(E) are
τo-closed subsets of E, since they evidently contain all (o)-limits of their (o)-
convergent nets. In view of Lemma 5, (iii), C(E) and S(E) are (o)-topological.
It follows that C(E) and S(E) are atomic and (o)-continuous [4, Lemma 2.2].
We have shown [18, Lemma 4.3] that then E can be decomposed into direct
product of irreducible effect algebras.

Proposition 10. In every (o)-topological effect algebra E:
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(i) The center C(E) is a complete atomic Boolean algebra.
(ii) The set of sharp elements S(E) is a complete atomic and (o)-continuous

orthomodular lattice.
(iii) E ∼= ∏{[0, p] | p is an atom of C(E)}, [0, p] are irreducible effect

algebras.

Note that the atomicity of C(E) and S(E) for a complete effect algebra E
does not imply that E is atomic.

Example 11. Let E = [0, 1] ⊆ R with defined a⊕b = a+b iff a+b ≤ 1. E is a
complete MV-effect algebra, since every pair of elements of E are comparable
and hence compatible. Clearly E has separated intervals which implies that τi

on E is Hausdorff and hence τo = τi is a compact Hausdorff topology on E (see

[4] and [17]). Moreover, as E is complete, for xα ∈ E, α ∈ E we have xα
(o)→ x

iff x =
∨

β∈E
∧

α≥β xα =
∧

β∈E
∨

α≥β xα iff xα
τo→ x, hence (o)-convergence

is a topological convergence on E. Evidently E is (o)-continuous. Note that
C(E) = S(E) = {0, 1}.

3. Compact (o)-topological effect algebras

Definition 12. A complete effect algebra is compact (o)-topological if E is
(o)-topological and τo is compact.

The interval topology τi on a bounded lattice L is the topology for which
an open base is generated by complements of finite unions of closed intervals.
It follows that τi ⊆ τo. If τi is Hausdorff then τi = τo (see [5]). By [7],
τi on L is compact iff L is a complete lattice. Thus on every complete effect
algebra E with Hausdorff interval topology the order topology τo is compact and
Hausdorff . Nevertheless, such an effect algebra E need not be (o)-topological
since E need not be (o)-continuous (see Example 20).

Definition 13. A bounded lattice L has separated intervals, if given any two
disjoint intervals [a, b], [c, d] ⊆ L, the lattice L can be covered by a finite number
of closed intervals each of which is disjoint with at least one of the intervals
[a, b] and [c, d],

We have shown in [17, Lemma 2.2] that the interval topology on a complete
lattice L is Hausdorff iff L has separated intervals.

Theorem 14. Every complete atomic (o)-continuous effect algebra with sep-
arated intervals is compact (o)-topological.

Proof. Since τi is Hausdorff, we have τo = τi and hence τo is compact Hausdorff
topology, as E is complete. By Theorem 8, E is (o)-topological.. ¤

Lemma 15. Let {Eκ | κ ∈ H} be a family of complete lattice effect algebras.
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(i) Ê =
∏{Eκ | κ ∈ H} has separated intervals iff for every κ ∈ H, Eκ

has separated intervals.
(ii) τi on Ê is Hausdorff iff τ

(κ)
i is Hausdorff for all κ ∈ H.

Proof. For any x̂ ∈ Ê we will use notation x̂ = (xκ)κ∈H where xκ ∈ Eκ, κ ∈ H.
(i) If â, b̂, ĉ, d̂ ∈ Ê are such that [â, b̂] ∩ [ĉ, d̂] = ∅ then there exists κ0 ∈ H

such that [aκ0 , bκ0 ] ∩ [cκ0 , dκ0 ] = ∅. Conversely, if for some κ0 ∈ H and for
aκ0 , bκ0 , cκ0 , dκ0 ∈ Eκ0 . we have [aκ0 , bκ0 ] ∩ [cκ0 , dκ0 ] = ∅ then, for all κ ∈ H,
κ 6= κ0, we put aκ = cκ = 0 and bκ = dκ = 1 which gives [â, b̂]∩[ĉ, d̂] = ∅. Thus
we conclude that Ê has separated intervals iff all Eκ have separated intervals.

(ii) This follows by (i) and [17, Lemma 2.2] ¤

Theorem 16. Every complete atomic distributive effect algebra E has sepa-
rated intervals and it is compact (o)-topological with τo = τi.

Proof. By [22, Theorem 3.1 and Corollary 3.2] we have E ∼= ∏{[0, pκ] | κ ∈ H}
where {pκ | κ ∈ H} is the set of all atoms of C(E) and for every κ ∈ H the
interval [0, pκ] is either a finite chain or a distributive diamond {0κ, aκ, bκ, pκ}
in which pκ = 2aκ = 2bκ, hence all [0, pκ] have separated intervals. Moreover,
E is (o)-continuous. By Theorem 8, it follows that E is (o)-topological since,
in view of Lemma 15, τo = τi is compact Hausdorff. ¤

Corollary 17. Every complete atomic MV-effect algebra (MV-algebra) E has
separated intervals and it is compact (o)-topological with τo = τi.

Note that statements of Theorem 16 and Corollary 17 need not be true for
non-atomic E, as no non-atomic complete Boolean algebra is (o)-topological.
On the other hand there are non-atomic MV-effect algebras which are compact
(o)-topological with τo = τi (see Example 11).

The set AE of all atoms of an atomic effect algebra E is called almost
orthogonal if for every p ∈ AE the set {a ∈ AE | a 6≤ p′} is finite.

Theorem 18. Let E be a compact (o)-topological atomic effect algebra and
AE is the set of all atoms of E. Then:

(i) AE is almost orthogonal.
(ii) For every p ∈ AE there are finite elements u1, u2, . . . , un of E such

that E =
(⋃n

k=1[uk, 1]
) ∪ [0, p′] and [0, p′] ∩ (⋃n

k=1[uk, 1]
)

= ∅.
Proof. Set AE = {p ∈ E | p is an atom of E}. Let p ∈ AE and x ∈ E, x 6= 0.
We have proved in [25, Theorem 3.1] that x =

∨{u ∈ E | u ≤ x, u is finite}.
It follows that either x ≤ p′, or there is a finite element u ∈ E with u ≤ x and
u 6≤ p′. Let U = {u ∈ E | u is finite}. Then E =

(⋃
u∈U ,u 6≤p′ [u, 1]

) ∪ [0, p′].
Because E is (o)-topological, the intervals [u, 1] and [0, p′] are τo-clopen, by
Theorem 9. As E is compact there is a finite set {u1, u2, . . . , un} ⊆ U , uk 6≤ p′

such that E =
(⋃n

k=1[uk, 1]
) ∪ [0, p′]. Evidently

(⋃n
k=1[uk, 1]

) ∩ [0, p′] = ∅,
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as uk 6≤ p′, for k = 1, . . . , n. Moreover, if a ∈ AE and a 6≤ p′ then there is
k ∈ {1, . . . , n} such that a = uk. It follows that the set {a ∈ AE | a 6≤ p′} is
finite. ¤

Proposition 19. There are nonatomic complete MV-effect algebras which are
compact (o)-topological with τo = τi (see Example 11).

The next example shows that a complete atomic effect algebra E with com-
pact Hausdorff order topology and τi = τo need not be (compact) (o)-topological
since E need not be (o)-continuous.

Example 20. Let E be a horizontal sum of MV-effect algebras M1 and M2,
which means that we identify least and greatest elements of M1 and M2, re-
spectively, and all pairs a ∈ M1 \{0, 1} and b ∈ M2 \{0, 1} are noncomparable.
Further, let M1 be an MV-effect algebra derived from a Boolean algebra with
infinitely many atoms and M2 = {0, a, 2a = 1}.

To show that E is not (o)-continuous, we put A = {p ∈ M1 | p is an
atom of M1} and uα =

∨
α, for all finite sets α ⊆ A. Then uα ↑ 1, but

uα ∧ a = 0 while 1 ∧ a = a. It follows that E is not (o)-topological. Clearly E
has separated intervals which gives that τo = τi is Hausdorff compact topology,
as E is complete.

Finally, the next example shows that an (o)-topological complete atomic
modular effect algebra E need not be compact (o)-topological .

Example 21. Let the effect algebra E be a horizontal sum (0–1 pasting) of
contably many distributive diamonds Eκ = {0κ, aκ, bκ, 1κ = 2aκ = 2bκ} κ ∈ H
and H be infinite. Evidently, τo is discrete and hence it is not compact since
H is infinite.
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