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Hilbert space. The operators of the problem appear as time-dependent
functions with values in the space of linear continuous operators mapping
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functionals with respect to the admissible set of operators. The existence of
a solution in the continuous and the discretized form is verified. The con-
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INTRODUCTION

We shall deal with the maximum optimization problem connected with
a Volterra integral equation in the Hilbert space. We consider a class of
operator-functions t → A(t) appearing in the state integral equation as the
admissible set of control parameters. We shall use the approach similar to
[5], where the maximization problem for the class of coefficients of parabolic
problems was considered.

In contrast to [5] we start with the abstract formulation of the problem
and its approximation in Section 1. We shall verify the existence and unique-
ness theorem for certain class of linear continuous operators acting from the
Hilbert space into its dual.Applying the Rothe’s method (see e.g. [6], [7],
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[9]) we state the convergence result for the approximated state problem with
respect to a time variable and to a sequence of finite-dimensional subspaces
modelling the finite element spaces. In Section 2 we state the maximization
problem representing so called ”worst scenario” i.e. the worst admissible
operators.

The problem formulated in a Hilbert space will be applied to the reliable
solution problem for the anisotropic viscoelastic body made of a long memory
material. A suitable functional depending on the time and space dependent
coefficients is to be maximized. The approximate solution using three di-
mensional finite elements and the Hermitian interpolation with respect to
the time variable is explained.

1 The state problem and its approximation

For any Banach space X and T > 0 we introduce the set L∞(0, T ;X) of all
measurable essentially bounded functions w : [0, T ] → X, C([0, T ], X) the
set all continuous functions and the Sobolev space

W 1,∞(0, T ;X) = {w ∈ L∞(0, T ;X) : w′ ∈ L∞(0, T ;X)}

with a derivative w′ in the sense of distribitions. All sets of functions are
Banach spaces with norms

‖w‖L∞(0,T ;X) = ess sup
t∈[0,T ]

‖w(t)‖X , ‖w‖C([0,T ],X) = max
t∈[0,T ]

‖w(t)‖X ,

‖w‖W 1,∞(0,T ;X) = ‖w‖L∞(0,T ;X) + ‖w′‖L∞(0,T ;X).

We have the continuous imbedding W 1,∞(0, T ;X) ⊂ C([0, T ], X). Every
element w ∈W 1,∞(0, T ;X) can be expressed in a form

w(t) = w(0) +
∫ t

0
w′(s)ds, t ∈ [0, T ].

Let V be a Hilbert space with a scalar product ((., )) and a norm ‖.‖, V ∗
its dual space with a norm ‖.‖∗. We denote by 〈f, v〉 the duality pairing
between the functional f ∈ V ∗ and the element v ∈ V .

We shall deal with the set of operator functions t → A(t) with values in
the Banach space B = L(V, V ∗) of all linear bounded operators A : V → V ∗.

2



We assume moreover that A ∈ U , where U = W 1,∞(0, T ;B). The operator
A(0) : V → V ∗ is assumed to be positively definite i.e.

〈A(0)v, v〉 ≥ α0‖v‖2 ∀v ∈ V, α0 > 0. (1)

We introduce a norm in U equivalent with the original norm in W 1,∞(0, T ;B)
by

‖A‖U = ‖A(0)‖B + ess sup
t∈[0,T ]

‖A′(t)‖B.

Let f : [0, T ]→ V ∗, (A′ ∗ u)(t) =
∫ t
0 A
′
t(t− s)u(s)ds. We consider

The state problem:

To find u : [0, T ]→ V fulfilling

A(0)u(t) + (A′ ∗ u)(t) = f(t), t ∈ [0, T ]. (2)

Theorem 1.1 Let f ∈ C([0, T ], V ∗). Then there exists a unique solution
u ∈ C([0, T ], V ) of the equation (2).

Proof. There exists due to Lax-Milgram theorem the inverse operator
A(0)−1 ∈ L(V ∗, V ). The equation (2) is then equivalent to the Volterra
integral equation in a Banach space V :

u(t) + (B ∗ u)(t) = q(t), t ∈ [0, T ], (3)

with B ∈ L∞(0, T ;L(V, V )), q ∈ C([0, T ], V ) defined by B(t) = A(0)−1A′(t),
q(t) = A(0)−1f(t), t ∈ [0, T ].

The equation (3) can be expressed in a form

u = A(u), (4)

where A : C([0, T ], V )→ C([0, T ], V ) is defined by A(u) = q −B ∗ u.
It can seen easily that there exists the integer n ≡ n(B, T ) such that the

operator An is contractive in the Banach space C([0, T ], V ). More precisely,
there holds

‖Anu−Anv‖ ≤ T n‖B‖nL∞(0,T ;L(V,V ))

n!
, n = 1, 2, ...

and hence there exist n0 ∈ N and κ ∈ (0, 1) such that

‖Anu−Anv‖ ≤ κ‖u− v‖ ∀u, v ∈ V, n ≥ n0.
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Applying the Banach fixed point theorem we obtain the existence and unique-
ness of a solution of (4) which is also a unique solution u ∈ C([0, T ], V ) of
(3) and (2).

We shall continue with a full discretization of the problem (2). Let us
assume a family of finite-dimensional subspaces {Vh}, Vh ⊂ V, h ∈ (0, h0)
such that for any v ∈ V there exist vh ∈ Vh, h ∈ (0, h0) fulfilling

vh → v in V as h→ 0 + . (5)

Let Ah ∈ W 1,∞(0, T ;B), h ∈ (0, h0) be approximating operators satisfy-
ing

〈Ah(0)u, u〉 ≥ α0‖u‖2 ∀u ∈ V with α0 > 0, (6)

Ah → A in U as h→ 0 + . (7)

Further we assume for τ ∈ (0, τ0) the division of the interval [0, T ] by

0 = t0 < t1 < ... < tN−1 < tN = T, ti = iτ, i = 1, ..., N ≡ N(τ).

We define the approximation uhτ ∈ C([0, T ], Vh) of a solution u of (2) by

uhτ (t) = uhτi−1 +
t− ti−1

τ
(uhτi − uhτi−1), t ∈ [ti−1, ti], (8)

where {uhτi } are unique solutions (due to Lax-Milgram theorem) of station-
ary problems

〈Ah0uhτ0 , v〉 = 〈fh0 , v〉 ∀v ∈ Vh, (9)

〈Ah0uhτi +
i−1∑

j=0

(Ahi−j − Ahi−j−1)uhτj , v〉 = 〈fhi , v〉 ∀v ∈ Vh, (10)

i = 1, ..., N.

with Ahi = Ah(ti), f
h
i = fh(ti), i = 0, 1, ..., N. We introduced fh : [0, T ] →

V ∗ - approximating functionals of f.
In order to assure the convergence of the scheme we impose the smooth-

ness condition on the right-hand side f .

Theorem 1.2 Let f ∈ W 1,∞([0, T ], V ∗), fh ∈ W 1,∞([0, T ], V ∗), h ∈ (0, h0)
be such that

fh → f in W 1,∞([0, T ], V ∗) as h→ 0 + . (11)
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Then
uhτ ⇀∗ u in W 1,∞([0, T ], V ) as h→ 0+, τ → 0+, (12)

where u ∈ W 1,∞(0, T ;V ) is a unique solution of the equation (2) and uhτ is
defined by (8)-(10).

If a solution u fulfils the condition

πh(u)→ u in C([0, T ], V ) as h→ 0+, (13)

where πh(u)(t) ∈ Vh, t ∈ [0, T ] is the orthogonal projection of u(t) onto the
subspace Vh, then

uhτ → u in C([0, T ], V ) as h→ 0+, τ → 0 + . (14)

Proof. Using the uniform coercivity (6) and the convergence (7) we obtain
from (10) the inequalities

α0‖uhτi ‖2 ≤ 〈
i−1∑

j=0

∫ tj+1

tj
(Ah)′s(ti − s)ds uhτj + fhi , u

hτ
i 〉

and

‖uhτi ‖ ≤ α−1
0 (‖A‖U + ε)

i−1∑

j=0

τ‖uhτj ‖+ α−1
0 ‖fhi ‖∗, i = 1, ..., N, h ∈ (0, h0).

Applying the convergence (7), (11) and a discrete form of Gronwall’s
lemma ([6]) with respect to {uhτi } we obtain the a priori estimate

‖uhτi ‖ ≤ C1(T ), i = 0, 1, ..., N(τ), h ∈ (0, h0), τ ∈ (0, τ0). (15)

Let us denote δwi = 1
τ
(wi − wi−1), wi = w(ti) for any function w ∈

C([0, T ], X) with values in a Banach space X. Setting i− 1 instead of i into
(10) and substracting from (10) we obtain the relations

〈Ah0δuhτi , v〉 = 〈−τ
i−2∑

j=0

δAhi−j−1δu
hτ
j − δAhi uhτ0 + δfhi , v〉 =

〈
i−2∑

j=0

∫ tj+1

tj
(Ah)′s(ti−1 − s)dsδuhτj −

1

τ

∫ ti

ti−1

(Ah)′(s)ds uhτ0 + δfhi , v〉 ∀v ∈ Vh.
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Again using the convergence (7), (11) and a discrete form of Gronwall’s
lemma we arrive at the estimate

‖δuhτi ‖ ≤ C2(T ), i = 0, 1, ..., N(τ), h ∈ (0, h0), τ ∈ (0, τ0). (16)

Let us define the step functions ūhτ , ũhτ : [0, T ]→ V by

ūhτ (0) = uhτ0 , ū
hτ (t) = uhτi , t ∈ (ti−1, ti],

ũhτ (0) = 0, ũhτ (t) = uhτi−1, t ∈ (ti−1, ti], i = 1, ..., N.

The equation (10) can be expressed in a form

〈Ah(0)ūhτ (t) + (Ah)′t ∗ ũhτ (t) +
∫ ti

t
(Ah)′t(ti − s)ũhτ (s)ds, v〉

= 〈
∫ t

0
[(Ah)′t(t− s)− (Ah)′t(ti − s)]ũhτ (s)ds+ f̄hτ (t), v〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, ..., N. (17)

The a priori estimates (15), (16) imply the estimate

‖uhτ‖W 1,∞(0,T ;V ) ≤ C3(T ), h ∈ (0, h0), τ ∈ (0, τ0) (18)

and the existence of a function w ∈ W 1,∞(0, T ;V ) and a sequence {hn, τn},
hn > 0, τn > 0 fulfilling

hn → 0, τn → 0, uhnτn ⇀∗ w in W 1,∞(0, T ;V ). (19)

Simultaneously there hold the inequalities

‖uhτ (t)− ūhτ (t)‖ ≤ τC2(T ), (20)

‖uhτ (t)− ũhτ (t)‖ ≤ τC2(T ). (21)

Applying the assumptions (5), (7), (11), the a priori estimate (15) and the
estimates (20), (21) we obtain from the equation (17) that a limiting function
w from (19) is a solution of the state equation (2). We have w ≡ u due to the
uniqueness of a solution and hence the convergence (12) holds. We remark
that we have used the relation

lim
τ→0
‖F (t+ τ)− F (t)‖Lp(0,T ;X) = 0, 1 ≤ p <∞

for any function F ∈ Lp(0, T ;X) extended by F (t+ τ) = 0, if t+ τ /∈ [0, T ]
in performing the limit in the integral on right-hand side of the relation (17).
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It remains us to prove the uniform convergence (14). Let uh(t) :=
πhu(t) ∈ Vh, t ∈ [0, T ] be the orthogonal projection onto Vh. It fulfils due to
the assumption (13) the uniform convergence

lim
h→0+

‖u− uh‖C([0,T ],V ) = 0. (22)

We define functions vhτ : [0, T ]→ Vh by

vhτ = uh − ũhτ , h ∈ (0, h0), τ ∈ (0, τ0). (23)

Taking into account the relations (2), (17) we obtain the identity

〈Ah(0)vhτ (t) + (Ah)′ ∗ vhτ (t), vhτ (t)〉 = 〈ωhτ (t), vhτ (t)〉, t ∈ [0, T ], (24)

where

ωhτ (t) = Ah(0)uh(t)− A(0)u(t) + (Ah)′ ∗ uh(t)− A′ ∗ u(t)

−
∫ ti

t
(Ah)′s(ti − s)ũhτ (s)ds+

∫ t

0
[(Ah)′s(t− s)− (Ah)′s(ti − s)]ũhτ (s)ds

+Ah(0)[ũh(t)− ūh(t)] + f(t)− f̄hτ (t).

The uniform coercivity (6) and the assumption A′ ∈ L∞(0, T ;B) imply the
inequality

‖vhτ (t)‖ ≤ ‖ωhτ (t)‖∗ + C3(T )
∫ t

0
‖vhτ (s)‖ds ∀t ∈ [0, T ].

The estimate

‖vhτ (t)‖ ≤ ‖ωhτ (t)‖∗ expTC3(T ) ∀t ∈ [0, T ] (25)

follows due to Gronwall’s lemma. The previous assumptions and estimates
imply the convergence

ωhτ → 0 in L∞(0, T ;V ∗) as h→ 0+, τ → 0 + .

The uniform convergence (14) then follows from (22), (23), (25) and the proof
is complete.
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2 A maximization problem and its approxi-

mation

Let us ussume the compact subset Uad ⊂ U of operator functions A : [0, T ]→
B such that A(0) fulfil uniform positive definiteness (1). The functional
Φ : U × C([0, T ];V )→ R fulfils

An ∈ Uad, {An, un} → {A, u} in U × C([0, T ];V ) as n→∞
=⇒ lim

n→∞ sup Φ(An, un) ≤ Φ(A, u). (26)

We formulate
Maximization Problem:

A∗ = arg max
A∈Uad

Φ(A, u(A)), (27)

where u(A) is a solution of the integral equation (2).

Theorem 2.1 Let the assumptions of Theorem 1.1 be fulfilled. Let the func-
tional Φ satisfy (26).

Then the Maximization Problem (27) has at least one solution.

Proof. Let {An} ⊂ Uad be a maximizing sequence for the problem (27)
i.e.,

lim
n→∞Φ(An, u(An)) = sup

A∈Uad
Φ(A, u(A)). (28)

There exists its subsequence (again denoted by {An}) and A∗ ∈ Uad such
that

An → A∗ in U . (29)

The corresponding sequence {un} fulfils the equations

An(0)un + A′n ∗ un = f, n = 1, 2, .... (30)

Let us denote by u∗ ∈ C([0, T ], V ) ≡ u(A∗) a unique solution of the equation

A∗(0)u∗ + A′∗ ∗ u∗ = f. (31)

If
un → u∗ in C([0, T ], V ), (32)

then the property (26) implies the relation (27).
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Comparing (30) and (31) we arrive at the equation

An(0)(un − u∗)(t) +
∫ t

0
(A′n)t(t− s)(un − u∗)(s)ds = ωn(t), t ∈ [0, T ] (33)

with

ωn(t) = [A∗(0)− An(0)]u∗(t) +
∫ t

0
(A∗ − An)′t(t− s)u∗(s)ds.

We have
lim
n→∞ ‖ωn‖C([0,T ],V ∗) = 0 (34)

due to the convergence (29). The equation (33) implies due to the uniform
coercivity and boundedness of {An} in U the inequality

‖(un − u∗)(t)‖ ≤M
∫ t

0
‖(un − u∗)(s)‖ds+ ‖ωn(t)‖∗ ∀t ∈ [0, T ].

Applying the Gronwall lemma we arrive at the estimate

‖(un − u∗)(t)‖ ≤ C4(M,T )‖ωn(t)‖∗ ∀t ∈ [0, T ]

and the uniform convergence (32) follows due to (34). The convergence (28),
(29), (32) together with the property (26) implies that a function A∗ ∈ Uad
solves the Maximization problem (27).

We continue with an approximate maximization problem. We assume
that there hold the assumptions of Theorem 1.2.

Let Uhad ⊂ Uad, h ∈ (0, h0) be such compact subsets that for all A ∈
Uad and h ∈ (0, h0) there exist approximating operator functions Ah ∈ Uhad
fulfilling the convergence (7). Let τ ∈ (0, τ0). We assume that the functional
Φ : U × C([0, T ], V )→ R fulfils the continuity property

Ak ∈ Uad, uk ∈ V, {Ak, uk} → {A, u} in U × C([0, T ], V ) as k →∞
=⇒ lim

k→∞
Φ(Ak, uk) = Φ(A, u). (35)

For A ∈ Uhad we set uhτ (A) ∈ W 1,∞(0, T ;V ) a solution belonging to the
approximating problem (9), (10).

The Approximate Maximization Problem Ph:

Ahτ∗ = arg max
A∈Uh

ad

Φ(A, uhτ (A)). (36)

9



Theorem 2.2 Let f ∈ W 1,∞(0, T ;V ∗) and the admissible sets Uad, Uhad sat-
isfy the assumptions stated above. Let the assumption (13) be fulfilled for
every A ∈ U . Then there exists a solution Ahτ∗ ∈ Uhad of the Problem (36).

If A∗ is a solution of the Problem (27) and a sequence {hn, τn} is such
that,

hn > 0, τn > 0, hn → 0, τn → 0,

then there exists its subsequence {hk, τk} fulfilling

Ahkτk∗ ⇀∗ A∗ in U for k →∞. (37)

Proof. Let {An} ⊂ Uhad be a maximizing sequence for the problem (36) i.e.

lim
n→∞Φ(An, u

hτ (An)) = sup
A∈Uh

ad

Φ(A, uhτ (A)). (38)

There exists its subsequence (again denoted by {An}) and Ahτ∗ ∈ Uhad such
that

An → Ahτ∗ in U . (39)

The corresponding sequence {uhτn }, uhτn = uhτ (An) fulfils the relation analo-
gous to (17)

〈An(0)ūhτn (t) + A′n ∗ ũhτn (t) +
∫ ti

t
(An)′t(ti − s)ũhτn (s)ds, v〉

= 〈
∫ t

0
[(An)′t(t− s)− (An)′t(ti − s)]ũhτn (s)ds+ f̄hτ (t), v〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, ..., N. (40)

Let uhτ∗ be a solution of the approximated scheme corresponding to Ahτ∗ :

〈Ahτ∗ (0)ūhτ∗ (t) + (Ahτ∗ )′ ∗ ũhτ∗ (t) +
∫ ti

t
(Ahτ∗ )′t(ti − s)ũhτ∗ (s)ds, v〉

= 〈
∫ t

0
[(A∗)′t(t− s)− (Ahτ∗ )′s(ti − s)]ũhτ∗ (s)ds+ f̄hτ (t), v〉

for all v ∈ Vh, t ∈ (ti−1, ti], i = 1, ..., N. (41)

The following estimates can be verified in the same way as in the proof of
Theorem 1.2:

‖uhτn ‖W 1,∞(0,T ;V ) ≤ C5(T ),
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‖uhτn (t)− ūhτn (t)‖ ≤ τC6(T ),

‖uhτn (t)− ũhτn (t)‖ ≤ τC6(T ), (42)

‖uhτ∗ ‖W 1,∞(0,T ;V ) ≤ C5(T ),

‖uhτ∗ (t)− ūhτ∗ (t)‖ ≤ τC6(T ),

‖uhτ∗ (t)− ũhτ∗ (t)‖ ≤ τC6(T ), n > n0, h ∈ (0, h0), τ ∈ (0, τ0).

Let us denote

vhτn = ũhτn − uhτ∗ , n > n0, h ∈ (0, h0), τ ∈ (0, τ0). (43)

We obtain from (40), (41) the identity

〈An(0)vhτn (t) + A′n ∗ vhτn (t), vhτn (t)〉 = 〈ωhτn (t), vhτn (t)〉. (44)

with ωhτn ∈ C([0, T ], V ∗) fulfilling

lim
n→∞ ‖ω

hτ
n ‖C([0,T ],V ∗) = 0. (45)

Applying the uniform coercivity of the operators {An} and the Gronwall’s
lemma in (44) we obtain due to (42), (43), (45) the convergence

uhτn → uhτ∗ in C([0, T ], V ). (46)

The property (26) of the functional Φ and the convergence (38), (39), (46)
then imply that Ahτ∗ is a solution of the Approximate Maximization Problem
(36).

We continue with the convergence of the method. Let hn > 0, τn >
0, hn → 0, τn → 0. The sequence {Ahnτn∗ } belongs to the compact set
Uad ⊂ U . Then there exist its subsequence {Ahkτk∗ } and the operator function
A0 ∈ Uad fulfilling

Ahkτk∗ = arg max
A∈Uhk

ad

Φ(A, uhkτk(A)), (47)

Ahkτk∗ → A0 in U . (48)

Let u0 ≡ u(A0) be a unique solution of the state equation

A0u0 + A0 ∗ u0 = f (49)
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and uhkτk∗ ≡ uhkτk(Ahkτk∗ ), k = 1, 2... be a unique solution of the approximate
problem

〈Ahkτk∗ (0)ūhkτk∗ (t) + (Ahkτk∗ )′t ∗ ũhkτk∗ (t) +
∫ ti

t
(Ahkτk∗ )′t(ti − s)ũhkτk∗ (s)ds, v〉

= 〈
∫ t

0
[(Ahkτk∗ )′t(t− s)− (Ahkτk∗ )′t(ti − s)]ũhkτk∗ (s)ds+ f̄hkτk(t), v〉

for all v ∈ Vhk , t ∈ (tki−1, t
k
i ], t

k
i = iτk, i = 1, ..., Nk.

Using the same approach as in the proof of Theorem 1.2 we obtain the con-
vergence

uhkτk∗ (Ahkτk∗ )→ u0 ≡ u(A0) in C([0, T ], V ) as k →∞. (50)

For an arbitrary A ∈ Uad there exists a sequence {Ãk} ∈ Uhkad fulfilling
Ãk → A in U . Simultaneously we have

uhkτk(Ãk)→ u(A) in C([0, T ], V ) as k →∞.
The relations (47)-(50) and the continuity property (35) then imply the re-
lations

Φ(A0, u(A0)) ≥ lim
k→∞

sup Φ(Ahkτk∗ , u∗(Ahkτk∗ )

≥ lim
k→∞

Φ(Ãk, u
hkτk(Ãk)) = Φ(A, u(A)).

Then we obtain A0 ≡ A∗ is a solution of the Maximization Problem (27).
Simultaneously there holds the convergence (37) and the proof is complete.

3 Applications to Maximization Problems for

Viscoelastic Bodies

Let Ω ⊂ R3 be a a bounded domain with a Lipschitz boundary ∂Ω = Γ̄0∪ Γ̄1

with open in ∂Ω parts Γ0,Γ1, meas(Γ0) > 0, Γ0 ∩ Γ1 = ∅ and the unit
outward normal vector n(x), x ∈ ∂Ω. We assume a quasistationary state of
a viscoelastic body occupying Ω and acting upon body forces f(x, t), x ∈
Ω, t ∈ [0, T ] and surface tractions g(x, t), x ∈ Γ1, t ∈ [0, T ]. Considering
the Boltzman type anisotropic long memory material ([3]) we obtain the
equilibrium equations

−div σ(u; x, t) = f(x, t), x ∈ Ω, t ∈ [0, T ] (51)
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with boundary conditions

u(x, t) = 0, x ∈ Γ0, σ(u; x, t)n = g(x, t), x ∈ Γ1, (52)

and stress-strain relations

σij(u; x, t) =

Aijkl(x, 0)εkl(u(t)) +
∫ t

0

∂

∂t
Aijkl(x, t− s)εkl(u(s))ds, (53)

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, 2, 3. (54)

We assume the components of fourth order tensor functions Aijkl(., .) : Ω ×
[0, T ]→ R to fulfil

Aijkl ∈ W 1,∞(0, T ;L∞(Ω))) (55)

The fourth order tensors Aijkl(x, 0) are assumed to be uniformly positively
definite

Aijkl(x, 0)εijεkl ≥ c0εijεij, c0 > 0, a.e. in Ω, ∀{εij} ∈ R3×3
sym, (56)

where R3×3
sym is the space of all symmetric tensors {εij} ∈ R3×3.

After setting

V = {v ∈ H1(Ω)3 : v(x) = 0, x ∈ Γ0}

the Hilbert space of displacements vectors v : Ω → R3 and using the nota-
tions from the previous section we introduce the operator function A ∈ U
by

〈A(t)u,v〉 =
∫

Ω
Aijkl(x, t)εij(u)εkl(v)dx, u, v ∈ V. (57)

The operator A(0) : V → V ∗ is positively definite with some constant α0 > 0
due to the uniform positive-definiteness of the tensor function {Aijkl(., 0)}
and the Korn’s inequality, verified in ([8]). If we define the functional
f(t) ∈ V ∗, t ∈ [0, T ] by

〈f(t),v〉 =
∫

Ω
f(x, t).v(x)dx+

∫

Γ1

g(r, t).v(r)dr, v ∈ V (58)

we can identify the state integral equation (2) with a weak formulation of
the boundary value problem (51)-(54). Applying Theorem 1.1 we obtain
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Theorem 3.1 Let f ∈ C([0, T ], L2(Ω)3), g ∈ C([0, T ], L2(Γ1)3). Then there
exists a unique weak solution u ∈ C([0, T ], V ) of the problem (51)-(54).

Let us introduce the following spaces of coefficients {Aijkl} by

U = [W 1,∞(0, T ;L∞(Ω))]81 (59)

and

V = [W 1,p(0, T ;W 1,q(Ω)) ∩W 2,p(0, T ;L∞(Ω))]81, p > 1, q > 3 (60)

or
V = [W 1,∞(0, T ;W 1,q(Ω)) ∩W 2,p(0, T ;L1(Ω))]81, p > 1. (61)

There holds in both cases the compact imbedding V ⊂⊂ U .
We have applied the compact imbedding W 1,q(Ω) ⊂⊂ L∞(Ω) and the

theory of compact sets in the spaces Lp(0, T ;B), 1 ≤ p ≤ ∞, ( B− a Banach
space) due to Simon ([11]).

The set of admissible coefficients

Uad = { {Aijkl} ∈ V : ‖{Aijkl}‖V ≤ c1, (62)

Aijkl(x, 0)εijεkl ≥ c0εijεij, c0 > 0, ∀x ∈ Ω, ∀{εij} ∈ R3×3
sym}

is compact in the Banach space U .
We can consider instead of the set Uad its arbitrary convex closed (in V)

subset.
Most of viscoelastic materials are described by coefficients fulfilling the

exponential decreasing of their time derivatives. In that case we can consider
as the admissible set

U1
ad = { {Aijkl} ∈ Uad : ‖{A′ijkl(t)}‖[L∞(Ω)]81 ≤ c2e

−βt, β > 0, ∀t ∈ [0, T ]}.

Very important special case of the set U1
ad is the set of coefficients in the

exponential form

Aijkl(t) = B
〈0〉
ijkl +

M∑

m=1

B
〈m〉
ijkle

−βmt, βm > 0, m = 1, ...,M
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with positively definite fourth-order tensor {Aijkl(0)}. Precisely, the admis-
sible set has the form

U2
ad = { [{B〈n〉ijkl}, {βm}] ∈ [W 1,q(Ω)81 ×R]M , q > 3 :

M∑

n=0

B
〈m〉
ijkl(x)εijεkl ≥ α0εijεij, α0 > 0, ∀x ∈ Ω, ∀{εij} ∈ R3×3

sym,

‖{B〈m〉ijkl}‖W 1,q(Ω)81 ≤ cm, n = 0, ...,M ;

0 < γm ≤ βm ≤ δm, m = 1, ...,M}.

Let

Ω̄ =
M⋃

m=1

Ω̄m, Ωi ∩ Ωj = ∅, for i 6= j.

We assume the cofficients to be constant with respect to x on the subsets
Ωm, m = 1, ...,M . The admissible set has then the form

U3
ad = {{Aijkl} ∈ U : Aijkl|Ωm(x, t) = A

〈m〉
ijkl(t),

A
〈m〉
ijkl(0)εijεkl ≥ c0εijεij, c0 > 0, ∀εij ∈ R3×3

sym,

A
〈m〉
ijkl ∈ W 2,p(0, T ), ‖A〈m〉ijkl‖W 2,p(0,T ) ≤ cm, m = 1, ...,M}.

We can formulate

Maximization problem P :

A∗ = arg max
A∈Uad

Φ(A,u(A)), A = {Aijkl}.

with goal functionals Φi : U × C([0, T ];V ) → R, i = 1, 2 fulfilling the
assumptions (26).

Let Ωj ⊂ Ω, intervals Ij ⊂ [0, T ], j = 1, ..., J.

1) Φ1(A,u(A)) = max
1≤j≤J

ψj(u(A)) with

a) ψj(u(A) = (meas Ωj)
−1
∫

Ωj
u(A)(t∗)dx, t∗ ∈ (0, T ], or

b) ψj(u(A) = (measIj)
−1(measΩj)

−1
∫
Ij

∫
Ωj

u(A)dtdx.

2) Φ2(A,u(A)) =
∫ T
0

∫
Ω κ(A,u(A))dtdx,
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κ(A,u(A)) =
∑
i6=j[aij(σii − σjj)2 + bijσ

2
ij], aij > 0, bij > 0,

σij ≡ σij(A,u(A))(t) = Aijkl(0)εkl(u(t)) + (A′ijkl ∗ εkl(u))(t).

The functional Φ2 expresses the intensity of the shear stresses.

It can be verified using the standard methods that the Maximization
problem P fulfils for all above mentioned choises of admissible sets and goal
functions the conditions of the general theory and it has at least one solution
A∗ = {A∗ijkl}.

We continue with the finite element approximation of the Problem P . We
assume the polygonal region Ω divided regularly (see [4] for the details) by
tetrahedrals {Gi} :

Ω̄ =
I(h)⋃

i=1

Ḡi, Gi ∩Gj = ∅, i 6= j, h = diam Gi, i = 1, ..., I(h).

The division is consistent with the partition ∂Ω = Γ0 ∪ Γ1. Let

Vh = { v ∈ V ∩ C(Ω̄)3 : v|Gi ∈ P1},

where P1 ⊂ R3 is the space of vector polynomials of the first degree. Let us
assume the admissible set Uad defined in (62). In order to fulfil the regularity
of coefficients {Aijkl} we shall consider the Hermitian interpolation with re-
spect to the time variable. The method of Galerkin space-time discretization
used in [10] can be used in final numerical algorithms.

For τ > 0 we recall the division of the interval [0, T ] by

0 = t0 < t1 < ... < tN−1 < tN = T, tm = mτ, m = 0, 1, ..., N(τ)

and the approximation uhτ ∈ C([0, T ], Vh) of a weak solution u of (51)-(54)
by

uhτ (t) = uhτm−1 +
t− tm−1

τ
(uhτm − uhτm−1), t ∈ [tm−1, tm].

Approximate maximization problem Phτ :

Ahτ∗ = arg max
A∈Uhτ

ad

Φ(A,uhτ (A)), A = {Aijkl}
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with the approximate admissible set of fourth-order tensor functions

Uhτad = { A ∈ Uad : A(t) = A〈0〉m−1φ0(
t− tm−1

τ
) +

A〈1〉m−1φ0(
t− tm−1

τ
) +A〈0〉m φ1(

t− tm
τ

) +A〈1〉m φ1(
t− tm
τ

),

A〈0〉m = A〈0〉0 + τ
m∑

n=1

A〈1〉n , tm−1 ≤ t ≤ tm, m = 1, ..., N(τ)},

A〈r〉m := {A〈r〉ijkl,m}, A〈r〉ijkl,m ∈ Uh, r = 0, 1,

Uh = {φ ∈ C(Ω̄) : φ|Gn ∈ P1, n = 1, ...I(h)}.

The Hermitian basic functions φ0, φ1 have the form

φ0(x) =

{
1− 3x2 − 2x3, −1 ≤ x ≤ 0,
1− 3x2 + 2x3, 0 ≤ x ≤ 1,

φ1(x) =

{
x+ 2x2 + x3, −1 ≤ x ≤ 0,
x− 2x2 + x3, 0 ≤ x ≤ 1.

The discrete values of uhτ are determined by variational equations

〈A〈0〉0 uhτ0 ,v〉 = 〈fh0 ,v〉 ∀v ∈ Vh,

〈A〈0〉0 uhτm +
i−1∑

n=0

τA
〈1〉
m−nu

hτ
n ,v〉 = 〈fhm,v〉 ∀v ∈ Vh,

m = 0, 1, ..., N(τ) (63)

with the operators A〈r〉m : V → V ∗ defined by

〈A〈r〉m u,v〉 =
∫

Ω
A
〈r〉
ijkl,m(x)εij(u)εkl(v)dx, u, v ∈ V,

and the finite element approximations fhm of the functionals f(tm) ∈ V ∗,
m = 1, ..., N(τ) defined in (58).

Using the approach similar to the proof of the Theorem 2.2 the conver-
gence of a subsequence of {Ahτ} as h→ 0+, τ → 0+ can be verified.
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Remark 3.2 The Maximization Problem (27) can be formulated also for
the bending problem of a viscoelastic plate of variable thhickness and made
of a long memory material. The deflections of the middle surface Ω are the
elements of the Hilbert space

V = {v ∈ H2(Ω) : v|Γ0 =
∂v

∂n
|Γ0 = 0, v|Γ1 = 0},

if the part Γ0 of the boundary ∂Ω is clamped and Γ1 is simply supported.
The functionals A(t) : V → V ∗ are of the form

〈A(t), v〉 =
∫

Ω
e3(x)Aijkl(x, t)

∂2u

∂xi∂xj

∂2v

∂xj∂xk
dx1dx2

with the tensors {Aijkl(x, t)}, i, j, k, l ∈ {1, 2}, x = (x1, x2) fulfilling the
positive definiteness for t = 0. The variable thicknesses e : Ω̄ → R can
play the role of control parameters in a similar way as in [1], [2], where a
minimization problem for a short memory material was investigated.
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