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Abstract. We prove a theorem about subdirect decompositions of lattice effect
algebras. Further, we show how, under these decompositions, blocks, sets of sharp
elements and centers of those effect algebras are decomposed. As an application we
prove a statement about the existence of subadditive state on some block-finite effect
algebras.
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1. Introduction and basic notions

In general, an effect algebra is a partial algebra with two constants 0, 1 and
a partial binary operation ⊕ (the orthogonal sum) satisfying very simple axioms
introduced by Foulis and Bennett (1994). A model for an effect algebra is the
standard effect algebra E(H) of positive self-adjoint operators dominated by the
identity on the Hilbert space H.

Definition 1.1 Foulis and Bennett (1994). A structure (E;⊕, 0, 1) is called an
effect-algebra if 0, 1 are two distinguished elements and ⊕ is a partially defined
binary operation on E which satisfies the following conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a ⊕ b = 1 (we put
a′ = b),

(Eiv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect algebra
E we can define the partial operation 	 and the partial order ≤ by putting

a ≤ b and b	 a = c iff a⊕ c is defined and a⊕ c = b .

Since a ⊕ c = a ⊕ d implies c = d, the 	 and the ≤ are well defined. If E with
the defined partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called
a lattice effect algebra (a complete effect algebra). For more details we refer the
reader to [1] and the references given there.

Definition 1.2. Let (E;⊕, 0, 1) be an effect algebra. Q ⊆ E is called a sub-effect
algebra of E iff

(i) 1 ∈ Q,
(ii) if a, b, c ∈ E with a ⊕ b = c and out of a, b, c at least two elements are in Q

then a, b, c ∈ Q.
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Note that if Q is a sub-effect algebra of E then Q with inherited operation ⊕ is
an effect algebra in its own right.

Definition 1.3. Let (E;⊕E , 0E , 1E) and (F ;⊕F , 0F , 1F ) be effect algebras. A
bijective map ϕ : E → F is called an isomorphism if

(i) ϕ(1E) = 1F ,
(ii) for all a, b ∈ E: a ≤E b′ iff ϕ(a) ≤F

(
ϕ(b)

)′
in which case ϕ(a ⊕E b) =

ϕ(a)⊕F ϕ(b).
We write E ∼= F . Sometimes we identify E with F = ϕ(E). If ϕ : E → F is an
injection with properties (i) and (ii) then ϕ is called an embedding .

Note, that Kôpka (1992) introduced to effect algebras equivalent in some sense
structures called D-posets, in which the operation of difference of fuzzy sets is the
primary operation. For the connections we refer to [1] [10] and [12].

Finally, note that lattice effect algebras generalize orthomodular lattices and
MV-algebras (including Boolean algebras), [1], [6], [7], [11].

For every central element z of a lattice effect algebra E, the interval [0, z] with
the ⊕ operation inherited from E and the new unity z is a lattice effect algebra in
its own right. We are going to prove a statement about decompositions of E into
subdirect products of such intervals [0, z].

2. Compatibility, blocks and central elements

Recall that elements a, b of a lattice effect algebra (E;⊕, 0, 1) are called com-
patible (written a ↔ b) iff a ∨ b = a ⊕ (b 	 (a ∧ b)) (see [11]). P ⊆ E is a set of
pairwise compatible elements if a ↔ b for all a, b ∈ P . For a ∈ E and Q ⊆ E we
will write a ↔ Q iff a ↔ q for all q ∈ Q. M ⊆ E is called a block of E iff M is
a maximal subset of pairwise compatible elements. Every block of a lattice effect
algebra E is a sub-effect algebra and a sub-lattice of E and E is a union of its
blocks (Riečanová, 2000). Lattice effect algebra with a unique block is called an
MV-effect algebra. Every block of a lattice effect algebra is an MV-effect algebra in
its own right. In [13] it was proved that every block M of a lattice effect algebra E
is closed with respect to all existing infima and suprema of subsets of M . We say
that M is a full sub-lattice of E.

An element z of an effect algebra E is called central if x = (x ∧ z) ∨ (x ∧ z′) for
all x ∈ E. The center C(E) of E is the set of all central elements of E, (Greechie,
Foulis and Pulmannová 1995). If E is a lattice effect algebra then z ∈ E is central
iff z ∧ z′ = 0 and z ↔ x for all x ∈ E, Riečanová (1999). Thus, in a lattice effect
algebra E, C(E) = B(E) ∩ S(E), where B(E) =

⋂{M ⊆ E | M is a block of E}
is called a compatibility center of E and S(E) = {z ∈ E | z ∧ z′ = 0} is the set
of all sharp elements of E. Evidently, B(E) = {x ∈ E | x ↔ y for all y ∈ E}. In
every lattice effect algebra E, S(E) is an orthomodular lattice (Jenča, Riečanová,
1999), and B(E) is an MV-effect algebra. Hence C(E) is a Boolean algebra, [5].
Moreover, S(E), B(E), C(E) are full sub-lattices of a lattice effect algebra E, which
means that they are closed with respect to all infima and suprema existing in E,
[15]. It follows that if E is a complete effect algebra then S(E), B(E), C(E) and
every block of E are also complete. Further, B(E), S(E) and C(E) are sub-effect
algebras of E, [8],[15].
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In every lattice effect algebra E, if z ∈ C(E) then the interval [0, z] is a lattice
effect algebra with the new unit z and the partial operation ⊕ inherited from E. It
is because for x, y ≤ z with x ⊕ y defined in E we have x ⊕ y ≤ z [5]. Further,
z = (x⊕ x′)∧ z = (x∧ z)⊕ (x′ ∧ z) for all x ∈ E. It follows that for y ≤ z we have
z = y ⊕ (y′ ∧ z) and hence z 	 y = y′ ∧ d, [17].

Our observations about subdirect products of lattice effect algebras are based
on the following Theorem 2.1 from [8], reprinted also in the book [1], p. 107.

Lemma 2.1, (Jenča, Riečanová, 1999). Let E be a lattice effect algebra. Assume
b ∈ E and A ⊆ E are such that

∨
A exists in E and b↔ a for all a ∈ A. Then

(i) b↔ ∨
A

(ii)
∨{b ∧ a | a ∈ A} exists and equals b ∧ (

∨
A).

Another useful statements will be about central elements.

Lemma 2.2, [17]. Let u, v with u ≤ v′ be elements of a lattice effect algebra E
and z ∈ C(E), then (u⊕ v) ∧ z = (u ∧ z)⊕ (v ∧ z).
Lemma 2.3. Let E be a lattice effect algebra and D ⊆ C(E) with (1)

∨
D = 1

and (2) d1 ∧ d2 = 0 for all d1 6= d2, d1, d2 ∈ D. Then the following conditions are
equivalent for u, v ∈ E:

(i) u↔ v,
(ii) ∀d ∈ D : u ∧ d↔ v ∧ d,
(iii) ∀d1, d2 ∈ D : u ∧ d1 ↔ v ∧ d2.

Proof. (i) =⇒ (ii) because D ↔ E. Further (ii) =⇒ (iii) as for every d1 6=
d2, d1, d2 ∈ D we have d1 ≤ d′2 which gives u ∧ d1 ≤ d1 ≤ d′2 ≤ d′2 ∨ v′ = (v ∧ d2)′

and hence u∧d1 ↔ v∧d2. By Lemma 2.1 we obtain (iii) =⇒ (i), as for each d1 ∈ D
we have v ∧ d1 ↔ u =

∨{u ∧ d | d ∈ D} and hence v = {∨{v ∧ d | d ∈ D} ↔ u.

Lemma 2.4. Let E be a lattice effect algebra and d ∈ C(E). Then:
(i) If M is a block of E then M ∩ [0, d] = {x ∧ d | x ∈M}.

(ii) Elements u, v ∈ [0, d] are compatible in [0, d] iff u↔ v in E.
(iii) Md ⊆ [0, d] is a block od [0, d] iff there exists a block M of E with M ∩ [0, d] =

Md.
(iv) S([0, d]) = {x ∧ d | x ∈ S(E)} = S(E) ∩ [0, d].
(v) B([0, d]) = {x ∧ d | x ∈ B(E)} = B(E) ∩ [0, d].

(vi) C([0, d]) = {x ∧ d | x ∈ C(E)} = C(E) ∩ [0, d].

Proof.
(i) Let x ∈ M . Since d ↔ E and x ↔ M we obtain x ∧ d ↔ M , which, by the

maximality of blocks, gives x ∧ d ∈ M . Conversely, y ∈ M ∩ [0, d] implies
y = y ∧ d ∈M .

(ii) This follows from the fact that [0, d] is a sublattice of E which is closed with
respect to ⊕.

(iii) If Md is a block of [0, d] then, by (ii), Md is a pairwise compatible set in E
and hence by [13] there exists a block M of E such that Md ⊆ M . Hence
Md ⊆ M ∩ [0, d], which, by (i) and (ii) and the maximality of blocks, gives
Md = M ∩ [0, d]. Conversely, if M is a block of E then M ∩ [0, d] is a pairwise
compatible set in [0, d], by (i) and Lemma 2.3. Further, if y ∈ [0, d] such that
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y ↔ M ∩ [0, d] then y = y ∧ d ↔ x ∧ d for all x ∈ M by (i). Further, for all
x ∈ M and d1 6= d, d1 ∈ D we have y ≤ d ≤ d′1 ≤ d′1 ∨ x′ = (d1 ∧ x)′ and
hence y ↔ d1 ∧ x. By Lemma 2.1 we obtain y ↔ x for all x ∈ M . By the
maximality of blocks we obtain y ∈ M , hence y ∈ M ∩ [0, d]. We conclude
that M ∩ [0, d] is a block od [0, d].

(iv) If x ∈ S(E) ∩ [0, d] then x ∧ x′ = 0 and x ≤ d which gives (x ∧ d) ∧ (x′ ∧ d) ≤
x ∧ x′ = 0 and hence x = x ∧ d ∈ S[0, d]. If x ∈ S([0, d]) then x = x ∧ d and
x ∧ x′ = (x ∧ d) ∧ x′ = x ∧ (x′ ∧ d) = 0 which gives x ∈ S(E) ∩ [0, d].

(v) B(E) ∩ [0, d] =
⋂{M ∩ [0, d] |M is a block of E} =

⋂{Md |Md is a block of
[0, d]} = B([0, d]). Moreover, x ∈ B(E) ∩ [0, d] implies x = x ∧ d. Conversely,
for x ∈ B(E) we have x ∧ d↔ E and hence x ∧ d ∈ B([0, d]).

(vi) C(E) ∩ [0, d] = B(E) ∩ S(E) ∩ [0, d] = B([0, d]) ∩ S([0, d]), by (iv) and (v).
Hence C([0, d]) = C(E)∩ [0, d]. Moreover, x ∈ C(E)∩ [0, d] implies x = x∧d.
Conversely, x ∈ C(E) implies x∧d↔ E and (x∧d)∧ (x′∧d) = 0 which gives
x ∧ d ∈ C([0, d]).

3. Subdirect decompositions of lattice effect algebras

A direct product of a family of effect algebras {Eκ | κ ∈ H}, H 6= ∅ is the
Cartesian product

∏{Eκ | κ ∈ H} with componentwise defined operations ⊕̂, 0̂, 1̂,
which means that (aκ)κ∈H⊕̂(bκ)κ∈H = (aκ ⊕κ bκ)κ∈H iff aκ ⊕κ bκ is defined
in Eκ , for all κ ∈ H. Further, 0̂ = (0κ)κ∈H and 1̂ = (1κ)κ∈H . Evidently,
for each κi ∈ H, the natural projection prκi of

∏{Eκ | κ ∈ H} onto Eκi is a
homomorphism.

∏{Eκ | κ ∈ H} is a direct product decomposition of an effect
algebra E if there is an isomorphism ϕ : E →∏{Eκ | κ ∈ H}.

A subdirect product of a family {Eκ | κ ∈ H} of effect algebras, H 6= ∅ is a sub-
effect algebra Q of the direct product

∏{Eκ | κ ∈ H} such that each restriction
prκi |Q, κi ∈ H, of the natural projection prκi to Q, is onto Eκi . Q is a subdirect
product decomposition of an effect algebra E if there exists an isomorphism ϕ : E →
Q.

Theorem 3.1. Let (E;⊕, 0, 1) be a lattice effect algebra and D ⊆ C(E) with (1)∨
D = 1 and (2) d1 ∧ d2 = 0 for all d1 6= d2; d1, d2 ∈ D. Then:
(i) E is isomorphic to a subdirect product of the family of effect algebras {[0, d] |

d ∈ D}.
(ii) Up to isomorphism, E is a sub-lattice of Ê =

∏{[0, d] | d ∈ D}.
(iii) If, moreover, E is complete or D is finite then E ∼= Ê.

Prof.
(i) By Lemma 2.1, for every u ∈ E we have u = u ∧ (

∨
D) =

∨{u ∧ d | d ∈ D}.
Let Q = {(u ∧ d)d∈D | u ∈ E} and the map ϕ : E → Q be defined by the
formula

ϕ(u) = (u ∧ d)d∈D, for all u ∈ E.
Let us show that Q is a sub-effect algebra of Ê =

∏{[0, d] | d ∈ D} and ϕ is an
isomorphism. Because operations ⊕̂, 0̂ and 1̂ in Ê are defined componentwise,
we obtain that for every x = (u∧d)d∈D ∈ Q we have x′ = (u′∧d)d∈D ∈ Q and
x⊕̂x′ = ((u∧d)⊕(u′∧d))d∈D = ((u⊕u′)∧d)d∈D = (1∧d)d∈D = 1̂ ∈ Q. Thus
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ϕ(u′) = (ϕ(u))′. Because the partial order in Ê is derived from ⊕̂, hence it is
also defined componentwise, we have for y = (v ∧ d)d∈D ∈ Q that y ≤ x′ iff
v ≤ u′ iff ϕ(v) ≤ (ϕ(u))′ and ϕ(u)⊕̂ϕ(v) = x⊕̂y = (u ∧ d)d∈D⊕̂(v ∧ d)d∈D =
((u ∧ d) ⊕ (v ∧ d))d∈D = ((u ⊕ v) ∧ d)d∈D = ϕ(u ⊕ v) ∈ Q. Further, we can
easily see that for u, v ∈ E we have ϕ(u) = ϕ(v) iff u ∧ d = v ∧ d for all
d ∈ D iff u = v by Lemma 2.1. Moreover, the restriction prd|Q of the natural
projection prd to Q is onto [0, d], hence Q is a subdirect product of Ê

(ii) Because, up to isomorphism [0, d] ⊆ E ⊆ Ê, for every x = (u∧ d)d∈D ∈ Q we
have

∨{u ∧ d | d ∈ D} = u ∈ E, we can conclude that, up to isomorphism E

is a sublattice of Ê, by Lemma 2.1.
(iii) If D is a finite set or Ê is a complete lattice then for every (ud)d∈D ∈ Ê we

have
∨{ud | d ∈ D} = u ∈ E.

Corollary 3.2. Under the assumptions of Theorem 1, if, moreover E is complete
or D is finite then:

(i) M is a block of E iff M ∼= ∏{Md | d ∈ D, Md is a block of E} =
∏{M ∩

[0, d] | d ∈ D}.
(ii) S(E) ∼= ∏{S([0, d]) | d ∈ D}.
(iii) B(E) ∼= ∏{B([0, d]) | d ∈ D}.
(iv) C(E) ∼= ∏{C([0, d]) | d ∈ D}.

Proof. We have shown in the proof of Theorem 3.1 that the map ϕ : E →∏{[0, d] |
d ∈ D} defined by ϕ(u) = (u ∧ d)d∈D, for all u ∈ E, is an isomorphism.

(i) The statement follows by Lemmas 1 and 2 and the maximality of blocks,
under which, the restriction ϕ|M is the wanted isomorphism.

(ii) By Lemma 2.4, (iv), the restriction ϕ|S(E) is the wanted isomorphism.
(iii) By Lemma 2.4, (v), the restriction ϕ|B(E) is the wanted isomorphism.
(iv) By Lemma 2.4, (vi), the restriction ϕ|C(E) is the wanted isomorphism.

In the next theorem and subsequently we use the following notation: For an
arbitrary mapping ϕ : X → Y and A ⊆ Y , the inverse image of A denoted by
ϕ−1(A) is the set

ϕ−1(A) = {x ∈ X | f(x) ∈ A} ⊆ X .

Clearly, if ϕ is a bijection this is identical with the image of A by the inverse
mapping ϕ−1.

Theorem 3.3. Under the assumptions of Theorem 3.1, if ϕD is the embedding of
E into

∏{[0, d] | d ∈ D} defined for all x ∈ E by ϕD(x) = (x ∧ d)d∈D, then
(i) M is a block of E iff there are blocks Md of [0, d], d ∈ D such that M =

ϕ−1
D

(∏{Md | d ∈ D}
)
.

(ii) S(E) = ϕ−1
D

(∏{S([0, d]) | d ∈ D}),
(iii) B(E) = ϕ−1

D

(∏{B([0, d]) | d ∈ D}),
(iv) C(E) = ϕ−1

D

(∏{C([0, d]) | d ∈ D}).
Proof. (i) By Lemmas 2.3 and 2.4, M is a maximal pairwise compatible set of
elements of E iff for each d ∈ D, {u∧ d | u ∈M} is a maximal pairwise compatible
set in [0, d]. Thus the statement follows by the definition of ϕD and blocks.

(ii)–(iv) These follow by Lemma 2.4 and the definition of ϕD.
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Note that Theorem 3.3 and Lemma 2.4 actually show that every block M of E
can be subdirectly decomposed by family {Md | d ∈ D} of blocks of [0, d]. Similar
statements are true for the set of all sharp elements of E, compatibility center of
E and center of E.

It is known that on every MV-algebra there exists a state. Moreover, every state
on an MV-algebra is subadditive [7]. Unfortunately, there are even finite (lattice)
effect algebras and orthomodular lattices admitting no states [18]. Some positive
results were given e.g. in [19]. Further positive results we can obtain as applications
of decompositions of effect algebras.

Definition 3.4. A map ω : E → [0, 1] ⊆ R is called a state on the effect algebra
E if (i) ω(1) = 1 and (ii) if a, b ∈ E with a ≤ b′ then ω(a ⊕ b) = ω(a) + ω(b). If,
moreover, E is lattice ordered then ω is called subadditive if ω(a∨ b) ≤ ω(a) +ω(b),
for all a, b ∈ E.

Note that a state on a lattice effect algebra need not to be subadditive, [19].

Lemma 3.5. Let E be a lattice effect algebra. A (subadditive) state on E exists
iff there is a nonzero d ∈ C(E) such that there exists a (subadditive) state on [0, d].

Proof. If d ∈ C(E), d 6= 0 then for x, y ∈ E with x ≤ y′ we have (x ⊕ y) ∧ d =
(x ∧ d) ⊕ (y ∧ d) by Lemma 2.4. Moreover, for every u, v ∈ E, by Lemma 2.3 we
have (u ∨ v) ∧ d = (u ∧ d) ∨ (v ∧ d). It follows that if m : [0, d] → [0, 1] ⊆ R is
a (subadditive) state on [0, d] then ω : E → [0, 1] ⊆ R defined for all x ∈ E by
ω(x) = m(x ∧ d) is a (subadditive) state on E. The converse is clear, as 1 ∈ C(E).

Theorem 3.6. Let E be a lattice effect algebra with exactly n blocks and the
center C(E) 6= {0, 1}. If n is a prime number then:

(i) For every d ∈ C(E) \ {0, 1}, at least one of the effect algebras [0, d] and [0, d′]
is an MV-effect algebra.

(ii) There exists a subadditive state on E.

Proof.
(i) Let d ∈ C(E) \ {0, 1}. By Theorem 3.1, E ∼= [0, d] × [0, d′]. Moreover, by

Corollary 3.2, (i) we have n = k1 · k2 under which k1 and k2 are numbers of
blocks of [0, d] and [0, d′] respectively. As n is a prime number, we conclude
that at least one of k1 and k2 equals to 1.

(ii) Assume that [0, d] is an MV-effect algebra. Then there exists a subadditive
state m on [0, d], as [0, d] can be organized into an MV-algebra. By Lemma
3.5, there exists a subadditive state on E.
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