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Abstract. For every central element z of a lattice effect algebra E, the interval [0, z] with
the ⊕ operation inherited from E and the new unity z is a lattice effect algebra in its own
right. We show connections between blocks, sharp elements and central elements of [0, z] and
those of E. We prove that except for central elements, the intervals [0, z] are closed with
respect to the ⊕-operation also for all sharp elements

1. Introduction and basic definitions

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure
providing an instrument for studying quantum effects that may be unsharp. Kôpka [10]
introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the
primary operation. For the connection between effect algebras and D-posets we refer to
[1] and [12].

In recent years effect algebras [2] or equivalent in some senseD-posets [10], [11] have been
studied as carriers of states or probability measures in the quantum or fuzzy probability
theory.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including
Boolean algebras), [1], [11]. Moreover, every lattice effect algebra E is a union of MV-effect
algebras (effect algebras which can be organized into MV-algebras), the set of all sharp
elements of E is an orthomodular lattice and the center of E is a Boolean algebra.

Definition 1.1. A structure (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are two distin-
guished elements and ⊕ is a partially defined binary operation on E which satisfies the
following conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a⊕ b = 1 (we put a′ = b),
(Eiv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect algebra E
we can define the partial operation 	 and the partial order ≤ by putting

a ≤ b and b	 a = c iff a⊕ c is defined and a⊕ c = b .
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Since a⊕ c = a⊕ d implies c = d, the 	 and the ≤ are well defined. If E with the defined
partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called a lattice effect algebra
(a complete effect algebra). For more details we refer the reader to [1] and the references
given there.

Definition 1.2. Let (E;⊕, 0, 1) be an effect algebra. Q ⊆ E is called a sub-effect algebra
of E iff

(i) 1 ∈ Q,
(ii) if a, b, c ∈ E with a ⊕ b = c and out of a, b, c at least two elements are in Q then

a, b, c ∈ Q.

Note that if Q is a sub-effect algebra of E then Q with inherited operation ⊕ is an effect
algebra in its own right.

Recall that elements a, b of a lattice effect algebra (E;⊕, 0, 1) are called compatible
(written a↔ b) iff a∨ b = a⊕ (b	 (a∧ b)) (see [11]). P ⊆ E is a set of pairwise compatible
elements if a↔ b for all a, b ∈ P . For a ∈ E and Q ⊆ E we will write a↔ Q iff a↔ q for
all q ∈ Q. M ⊆ E is called a block of E iff M is a maximal subset of pairwise compatible
elements. Every block of a lattice effect algebra E is a sub-effect algebra and a sub-lattice
of E and E is a union of its blocks (see [13]). Lattice effect algebra with a unique block is
called an MV-effect algebra. Every block of a lattice effect algebra is an MV-effect algebra
in its own right. In [13] it was proved that every block M of a lattice effect algebra E is
closed with respect to all existing infima and suprema of subsets of M . We say that M is
a full sub-lattice of E.

A lattice effect algebra E is a horizontal sum of blocks if A∩B = {0, 1} holds for every
pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an atom if 0 ≤ b < a implies b = 0.
E is called atomic if for every nonzero element x ∈ E there is an atom a ∈ E with a ≤ x.

An effect algebra E is called Archimedean if for no nonzero element e ∈ E, ne =
e ⊕ e ⊕ · · · ⊕ e (n times) exists for all positive integer n. We write ord(e) = ne ∈ N
if ne is the greatest integer such that nee exists in E. Every complete effect algebra is
Archimedean, [20].

Definition 1.3. Let (E;⊕E , 0E , 1E) and (F ;⊕F , 0F , 1F ) be effect algebras. A bijective
map ϕ : E → F is called an isomorphism if

(i) ϕ(1E) = 1F ,
(ii) for all a, b ∈ E: a ≤ b′ iff ϕ(a) ≤ (ϕ(b)

)′
in which case ϕ(a⊕ b) = ϕ(a)⊕ ϕ(b).

We write E ∼= F . Sometimes we identify E with F = ϕ(E).

2. Blocks of lattice effect algebras and of sets of sharp elements

Assume that (L;∨,∧,⊥, 0, 1) is an orthomodular lattice [9]. Then L becomes a lattice
effect algebra if we define that a⊕ b exists iff a ≤ b⊥ and then a⊕ b = a∨ b, [1], [10]. In an
orthomodular lattice L, two elements a, b ∈ L are compatible iff a = (a ∧ b) ∨ (a ∧ b⊥) iff
b = (a ∨ b) ∨ (a′ ∧ b), [9]. If L is the effect algebra derived from the orthomodular lattice
L then for b ∈ L we have 1 = b ∨ b⊥ = b ⊕ b⊥, since b ≤ (b⊥)⊥ and b ∧ b⊥ = 0. Thus
b⊥ = 1 	 b = b′ for all b ∈ L. Further, elements a, b of the orthomodular lattice L are
compatible iff a = (a∧ b)∨ (a∧ b⊥) iff b = (a∧ b)∨ (a⊥∧ b) which gives a = (a∧ b)⊕ (a∧ b′)
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and b = (b ∧ a) ⊕ (a′ ∧ b). It follows that a ∧ b′ = a 	 (a ∧ b) and (a ∧ b′) = b 	 (a ∧ b)
which gives (a ∧ b′) ∨ (a′ ∧ b) = (a ∧ b′)⊕ (a′ ∧ b) = (a	 (a ∧ b))⊕ (b	 (a ∧ b)) and hence
a ∨ b = (a ∧ b)⊕ (a	 (a ∧ b))⊕ (b	 (a ∧ b)) = a⊕ (b	 (a ∧ b)) which gives a↔ b. Thus
a, b ∈ L are compatible in an orthomodular lattice L iff a, b are compatible in the derived
effect algebra L.

In [8] has ben shown that in every lattice effect algebra E the subset S(E) = {x ∈ E |
x∧ x′ = 0} of all sharp elements of E is an orthomodular lattice being a sub-lattice and a
sub-effect algebra of E.

According to the above proved statement on the compatible pairs in an orthomodular
lattice and the derived effect algebra, it is clear that for every block M of a lattice effect
algebra E the intersection M ∩S(E) is a set of pairwise compatible elements in the ortho-
modular lattice S(E) and the derived lattice effect algebra S(E) as well. In spite of this
fact M ∩ S(E) in general is not a block of S(E), as the following example shows.

Example 2.1. Let E = {0, a, a′, b, 1} where a ⊕ a′ = 1 = b ⊕ b. Evidently S(E) =
{0, a, a′, 1}. Further {0, b, 1} is a block of E, while M ∩ S(E) = {0, 1} is not a block of
S(E), because S(E) is a Boolean algebra.

3. Central elements in a lattice effect algebras

An element z of an effect algebra E is called central if x = (x∧z)∨(x∧z′) for all x ∈ E.
The center C(E) of E is the set of all central elements of E, [5]. If E is a lattice effect
algebra then z ∈ E is central iff z ∧ z′ = 0 and z ↔ x for all x ∈ E, [12]. Thus in a lattice
effect algebra E, C(E) = B(E) ∩ S(E), where B(E) =

⋂{M ⊆ E | M is a block of E} is
called a compatibility center of E and S(E) = {z ∈ E ∈ z ∧ z′ = 0} is the set of all sharp
elements of E. Evidently, B(E) = {x ∈ E | x ↔ y for all y ∈ E}. In every lattice effect
algebra E, S(E) is an orthomodular lattice, [8] and B(E) is an MV-effect algebra. Hence
C(E) is a Boolean algebra, [5]. Moreover, S(E), B(E), C(E) and all blocks of E are full
sub-lattices of a lattice effect algebra E, which means that they are closed with respect to
all infima and suprema existing in E, [15]. It follows that if E is a complete effect algebra
then S(E), B(E), C(E) and every block of E are also complete. Further, B(E), S(E)
and C(E) are sub-effect algebras of E, [8],[15].

Assume that z ∈ E is a central element of the lattice effect algebra E. Then the interval
[0, z] is a lattice effect algebra with the unit z and the partial operation ⊕ inherited from
E. It is because for x, y ≤ z with x ⊕ y defined in E we have x ⊕ y ≤ z, [5]. Further,
z = (x ⊕ x′) ∧ z = (x ∧ z) ⊕ (x′ ∧ z) for all x ∈ E. It follows that for y ≤ z we have
z = y ⊕ (y′ ∧ z) and hence z 	 y = y′ ∧ z, [17].

By the definition of central element and the properties mentioned above it is clear that
z ∈ E is central iff E ∼= [0, z] × [0, z′] where [0, z] × [0, z′] is a cartesian product with
“componentwise” defined operations, which means that for (a, b), (c, d) ∈ [0, z]× [0, z′] we
have (a, b) ⊕ (c, d) = (a ⊕ c, b ⊕ d) iff a ≤ c′ and b ≤ d′ and (0, 0) is the zero and (1, 1) is
the unit in the product, [5].

Theorem 3.1. If z is a central element of a lattice effect algebra E then S([0, z]) =
S(E) ∩ [0, z].

Proof. For every y ≤ z we have z = (y ⊕ y′) ∧ z = (y ∧ z) ⊕ (y′ ∧ z) = y ⊕ (y′ ∧ z), [15].
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It follows that y ∈ S[0, z] iff y ∧ (y′ ∧ z) = 0 iff y ∧ y′ = 0, as y ∧ z = y. This proves the
theorem.

Theorem 3.2. Let E be a lattice effect algebra, M be a block of E and a ∈E.
(i) If a is an atom of M then a is an atom of E.

(ii) If a is an atom of E and a ∈ C(E) then [a, 1] ∩ [0, a′] = ∅ and E = [a, 1] ∪ [0, a′].
(iii) C(M) = S(M), B(M) = M and S(M) = S(E) ∩M .

Proof. (i) Let 0 < b < a. Then for every x ∈ M we have a ↔ x and hence x ∨ a =
a ⊕ (x 	 (a ∧ x). It follows that either a ≤ x or x ∨ a = a ⊕ x which gives a ≤ x′. Thus
either b ≤ x or b ≤ x′, which implies that b ↔ x, and by maximality of blocks we obtain
that b ∈M , a contradiction.

(ii) Since C(E) = B(E)∩S(E) we have a∧a′ = 0 and hence [a, 1]∩[0, a′] = ∅. Moreover,
x↔ a for all x ∈ E, which implies that a ≤ x or a ≤ x′. Thus E = [a, 1] ∪ [0, a′].

(iii) B(M) = M by the definition of blocks. Further, if x ∈ M then x′ ∈ M and
x∧ x′ ∈M . Hence S(M) = S(E)∩M and C(M) = B(M)∩S(M) = M ∩S(M) = S(M).

Theorem 3.3. For every block M and every central element z of a lattice effect algebra
E the intersection M ∩ [0, z] is a block of [0, z].

Proof. For every x, y ∈ M we have x↔ y ∧ z since z ↔ E and x↔ y. By maximality of
blocks we obtain that Mz = {x ∧ z | y ∈ M} ⊆ M , hence Mz = M ∩ [0, z]. Assume that
u ∈ E with u ≤ z and u ↔ Mz. Then u ↔ x for all x ∈ M because u ≤ z ≤ v′ for every
v ≤ z′ and u↔ x∧ z which gives u↔ x = (x∧ z)⊕ (x∧ z′). It follows that u ∈M ∩ [0, z].
By maximality of blocks, we conclude that M ∩ [0, z] is a block of [0, z].

Corollary 3.4. For every central element z of a lattice effect algebra E
B([0, z]) = B(E) ∩ [0, z] and C([0, z]) = C(E) ∩ [0, z].

Proof. By Theorem 3.3 B(E) ∩ [0, z] =
⋂{M ∩ [0, z] | M is a block of E} ⊇ B([0, z]).

Conversely, for y ∈ B(E) ∩ [0, z] we have y ∈ [0, z] and y ↔ E which gives y ↔ [0, z]
and hence y ∈ B([0, z]). We conclude that B(E) ∩ [0, z] = B([0, z]). It follows that
C([0, z]) = B([0, z]) ∩ S([0, z]) = B(E) ∩ [0, z] ∩ S(E) ∩ [0, z] = C(E) ∩ [0, z].

Theorem 3.5. Let z be a central element of a lattice effect algebra E and M be a block
of E. Then

(i) M ∼= (M ∩ [0, z])× (M ∩ [0, z′]),
(ii) S(E) ∼= S([0, z])× S([0, z′]),
(iii) B(E) ∼= B([0, z])×B([0, z′]),
(iv) C(E) ∼= C([0, z])× C([0, z′]),

Proof. (i) z ∈ C(E), therefore E ∼= [0, z]∩ [0, z′], [5]. Since ⊕, zero and unit in [0, z]× [0, z′]
are defined componentwise, ≤, ∨ and ∧ are defined componentwise as well. It follows that
(a, b), (c, d) ∈ [0, z]× [0, z′] are compatible iff a↔ c and b↔ d. Thus every maximal subset
M of pairwise compatible elements of the product is a product of maximal subsets M1 and
M2 of pairwise compatible elements in [0, z] and [0, z′], respectively. Combining this with
the fact that M ∩ [0, z] is a block of [0, z] and M ∩ [0, z′] is a block of [0, z′] we obtain the
proof of (i).
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(ii) Since (a, b)∧ (a′, b′) = 0 iff a∧a′ = 0 and b∧b′ = 0 iff a ∈ S([0, z]) and b ∈ S([0, z′]),
we obtain that S(E) ∼= S([0, z])× S([0, z′]).

(iii) is a consequence of (i).
(iv) Since C(E) = B(E)∩S(E) for every lattice effect algebra E, we conclude that (iv)

is a consequence of (ii) and (iii).

4 Sharp elements of a lattice effect algebras

Assume that E is a lattice effect algebra. In general, if for elements a, b ≤ c the sum
a⊕ b exists then the inequality a⊕ b ≤ c need not hold.

Example 4.1. Let E = {0, a, 2a, 3a, 1 = 4a} be a chain. Then a, 2a ≤ 2a but a⊕2a 6≤ 2a.

Theorem 4.2. For every element c of a lattice effect algebra E the following conditions
are equivalent:

(i) c ∈ S(E).
(ii) For all a, b ∈ [0, c] with a ≤ b′ the a⊕ b ≤ c.

Proof. (i) =⇒ (ii): since a ∧ b ≤ a ∨ b ≤ c and every chain in E is in a block of E, there
is a block M of E such that {a ∧ b, a ∨ b, c} ⊆ M . By Theorem 3.2, S(E) ∩M = C(M),
hence c is central in M . Further, a ⊕ b = (a ∧ b) ⊕ (a ∨ b). Because a ∧ b, a ∨ b ≤ c we
conclude that (a ∧ b)⊕ (a ∨ b) = a⊕ b ≤ c.

(ii) =⇒ (i): see [5].

Theorem 4.3. For every element z of an Archimedean lattice effect algebra E the fol-
lowing conditions are equivalent:

(i) z ∈ S(E).
(ii) If x ≤ z and nx = x⊕ · · · ⊕ x (n times) exists then nx ≤ z.

Proof. (i) =⇒ (ii): This follows by induction using Theorem 4.2.
(ii) =⇒ (i): Put x = z ∧ z′. By (ii) we have nx ≤ z ≤ z ∨ z′ = (z ∧ z′)′ = x′ for every

defined nx. It follows that x = 0, because otherwise (n + 1)x is defined for every n with
defined nx. This contradicts to the Archimedean property of E.
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[16] Z. Riečanová, Distributive atomic effect algebras, Demonstratio Mathematica 36 (2003) (to appear).
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