CENTRAL ELEMENTS, BLOCKS AND SHARP
ELEMENTS OF LATTICE EFFECT ALGEBRAS
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ABSTRACT. For every central element z of a lattice effect algebra E, the interval [0, z] with
the @ operation inherited from F and the new unity z is a lattice effect algebra in its own
right. We show connections between blocks, sharp elements and central elements of [0, z] and
those of E. We prove that except for central elements, the intervals [0, z] are closed with
respect to the @-operation also for all sharp elements

1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure
providing an instrument for studying quantum effects that may be unsharp. Koépka [10]
introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the
primary operation. For the connection between effect algebras and D-posets we refer to
[1] and [12].

In recent years effect algebras [2] or equivalent in some sense D-posets [10], [11] have been
studied as carriers of states or probability measures in the quantum or fuzzy probability
theory.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including
Boolean algebras), [1], [11]. Moreover, every lattice effect algebra E is a union of MV-effect
algebras (effect algebras which can be organized into MV-algebras), the set of all sharp
elements of F is an orthomodular lattice and the center of E is a Boolean algebra.

Definition 1.1. A structure (E;@®,0,1) is called an effect-algebra if 0, 1 are two distin-
guished elements and @ is a partially defined binary operation on E which satisfies the
following conditions for any a,b,c € E:

(Ei) b@a=a®bif a® b is defined,

(Eii) (a®b) @ c=a® (bd c) if one side is defined,
(Eiii) for every a € E there exists a unique b € F such that a® b =1 (we put a’ = b),
(Eiv) if 1 & a is defined then a = 0.

We often denote the effect algebra (E;@®,0,1) briefly by E. In every effect algebra FE
we can define the partial operation © and the partial order < by putting

a<band bSa=ciff a®cis defined and a Dc=5.
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Since a & ¢ = a @ d implies ¢ = d, the © and the < are well defined. If E with the defined
partial order is a lattice (a complete lattice) then (E;®,0, 1) is called a lattice effect algebra
(a complete effect algebra). For more details we refer the reader to [1] and the references
given there.

Definition 1.2. Let (E;®,0,1) be an effect algebra. @Q C E is called a sub-effect algebra
of E iff
(i) 1€,
(i) if a,b,c € E with a @ b = ¢ and out of a,b, c at least two elements are in () then
a,b,c € Q.

Note that if @) is a sub-effect algebra of F then () with inherited operation & is an effect
algebra in its own right.

Recall that elements a,b of a lattice effect algebra (E;®,0,1) are called compatible
(written a <> b) iff aVb =a® (b& (aAb)) (see [11]). P C E is a set of pairwise compatible
elements if a <~ b for all a,b € P. For a € F and () C E we will write a < Q iff a <+ ¢ for
all g € Q. M C F is called a block of F iff M is a maximal subset of pairwise compatible
elements. Every block of a lattice effect algebra FE is a sub-effect algebra and a sub-lattice
of F and E is a union of its blocks (see [13]). Lattice effect algebra with a unique block is
called an MV-effect algebra. Every block of a lattice effect algebra is an MV-effect algebra
in its own right. In [13] it was proved that every block M of a lattice effect algebra E is
closed with respect to all existing infima and suprema of subsets of M. We say that M is
a full sub-lattice of F.

A lattice effect algebra E is a horizontal sum of blocks if AN B = {0,1} holds for every
pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an atom if 0 < b < a implies b = 0.
E is called atomic if for every nonzero element z € E there is an atom a € E with a < x.

An effect algebra E is called Archimedean if for no nonzero element e € E, ne =
e®ed- - De (n times) exists for all positive integer n. We write ord(e) = n. € N
if ne is the greatest integer such that n.e exists in E. Every complete effect algebra is
Archimedean, [20].

Definition 1.3. Let (E;®pg,0p,1g) and (F;®p,0r, 1r) be effect algebras. A bijective
map ¢: F — F is called an isomorphism if

(i) for all a,b € E: a <V iff p(a) < (gp(b))/ in which case p(a @ b) = ¢(a) @ p(b).
We write £ = F. Sometimes we identify E with F' = ¢(F).

2. BLOCKS OF LATTICE EFFECT ALGEBRAS AND OF SETS OF SHARP ELEMENTS

Assume that (L;V,A,+,0,1) is an orthomodular lattice [9]. Then L becomes a lattice
effect algebra if we define that a © b exists iff « < b and then a®b = a Vb, [1], [10]. In an
orthomodular lattice L, two elements a,b € L are compatible iff a = (a A b) V (a A bL) iff
b= (aVb)V(a Ab),[9]. If L is the effect algebra derived from the orthomodular lattice
L then for b € L we have 1 = bV bt = b@ bt, since b < (b+)+ and b A bt = 0. Thus
bl =16b=1"V for all b € L. Further, elements a,b of the orthomodular lattice L are
compatible iff a = (a Ab)V (a AbL) iff b = (a Ab)V (a* Ab) which gives a = (aAb) D (aAV)
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and b = (bAa) ® (a’ Ab). Tt follows that a AV =a S (aAb) and (aAND) =06 (a A D)
which gives (a AV)V (a/ AD) = (aANV) D (o' AD) = (a© (aAb)) B (bS (aAb)) and hence
aVb=(aANb)®(ao(anb)d b (aAd) =a® (b (aAb)) which gives a < b. Thus
a,b € L are compatible in an orthomodular lattice L iff a,b are compatible in the derived
effect algebra L.

In [8] has ben shown that in every lattice effect algebra E the subset S(E) = {x € F |
x Az’ =0} of all sharp elements of E' is an orthomodular lattice being a sub-lattice and a
sub-effect algebra of F.

According to the above proved statement on the compatible pairs in an orthomodular
lattice and the derived effect algebra, it is clear that for every block M of a lattice effect
algebra E the intersection M NS(E) is a set of pairwise compatible elements in the ortho-
modular lattice S(F) and the derived lattice effect algebra S(E) as well. In spite of this
fact M NS(FE) in general is not a block of S(F), as the following example shows.

Example 2.1. Let F = {0,a,a/,b,1} where a ®a’ = 1 = b® b. Evidently S(E) =
{0,a,a’,1}. Further {0,b,1} is a block of E, while M N S(E) = {0,1} is not a block of
S(F), because S(E) is a Boolean algebra.

3. CENTRAL ELEMENTS IN A LATTICE EFFECT ALGEBRAS

An element z of an effect algebra E is called centralif x = (xA2)V (xAZ') for all z € E.
The center C(E) of E is the set of all central elements of E, [5]. If E is a lattice effect
algebra then z € E is central iff z A 2/ =0 and z < « for all x € E, [12]. Thus in a lattice
effect algebra F, C(E) = B(E) N S(F), where B(F) =(\{M C E | M is a block of E} is
called a compatibility center of E and S(E) = {z € E € z A 2/ = 0} is the set of all sharp
elements of E. Evidently, B(E) = {x € E | x <> y for all y € E}. In every lattice effect
algebra E, S(F) is an orthomodular lattice, [8] and B(F) is an MV-effect algebra. Hence
C(E) is a Boolean algebra, [5]. Moreover, S(E), B(FE), C(E) and all blocks of E are full
sub-lattices of a lattice effect algebra E, which means that they are closed with respect to
all infima and suprema existing in E, [15]. It follows that if E' is a complete effect algebra
then S(E), B(E), C(E) and every block of E are also complete. Further, B(E), S(F)
and C(F) are sub-effect algebras of E, [8],[15].

Assume that z € F is a central element of the lattice effect algebra E. Then the interval
[0, 2] is a lattice effect algebra with the unit z and the partial operation @ inherited from
E. Tt is because for x,y < z with = @ y defined in E we have z & y < z, [5]. Further,
z=(x@2)Nz=(xANz)® (2 Az) for all z € E. It follows that for y < z we have
2=y ® (y Nz)and hence z Sy =y A z, [17].

By the definition of central element and the properties mentioned above it is clear that
z € E is central iff £ = [0,z] x [0, 2] where [0,2] x [0,2/] is a cartesian product with
“componentwise” defined operations, which means that for (a,b), (¢,d) € [0, z] x [0, 2] we
have (a,b) @ (¢,d) = (a @ c,bd d) iff a < ¢ and b < d’ and (0,0) is the zero and (1,1) is
the unit in the product, [5].

Theorem 3.1. If z is a central element of a lattice effect algebra E then S([0,z]) =
S(E)NJo,z].

Proof. For every y < zwe have 2 = (y @y )ANz=(yA2)® Y Nz)=y® (Y Az), [15].
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It follows that y € S[0,z] iff yA(y' Az) =0iff y ANy =0, as y A z = y. This proves the
theorem.

Theorem 3.2. Let E be a lattice effect algebra, M be a block of £ and a €E.

(i) If a is an atom of M then a is an atom of E.

(ii) Ifa is an atom of E and a € C(FE) then [a,1]N[0,a'] =0 and E = [a,1] U [0,a’].
(iii) C(M) = S(M), B(M)=M and S(M) = S(E)N M.

Proof. (i) Let 0 < b < a. Then for every x € M we have a < x and hence z V a =
a® (xS (aAz). It follows that either a < z or z Va = a © x which gives a < 2’. Thus
either b < x or b < 2/, which implies that b < x, and by maximality of blocks we obtain
that b € M, a contradiction.

(ii) Since C(E) = B(E)NS(E) we have aAa’ = 0 and hence [a, 1]N[0,a'] = (). Moreover,
x < a for all x € E, which implies that a <z or a < z’. Thus E = [a,1] U [0,a’].

(iii) B(M) = M by the definition of blocks. Further, if z € M then 2’ € M and
x Az’ € M. Hence S(M) =S(E)NM and C(M)=B(M)NS(M)=MnS(M)=S(M).

Theorem 3.3. For every block M and every central element z of a lattice effect algebra
E the intersection M N [0, z] is a block of [0, z].

Proof. For every x,y € M we have z < y A z since z «» E and x < y. By maximality of
blocks we obtain that M, = {x Az |y € M} C M, hence M, = M N[0, z]. Assume that
u € F with u < z and u «+ M,. Then u < z for all x € M because u < z < v’ for every
v < 2" and u <> x A z which gives u < = = (x A 2) @ (x A 2'). It follows that u € M N[0, z].
By maximality of blocks, we conclude that M N0, z] is a block of [0, z].

Corollary 3.4. For every central element z of a lattice effect algebra FE
B([0,2]) = B(E) N0, 2] and C([0, 2]) = C(E) N[0, z].

Proof. By Theorem 3.3 B(E)N[0,z] = ({M N[0,z] | M is a block of E} D B([0, z]).
Conversely, for y € B(E) N [0, z] we have y € [0,z] and y < E which gives y < [0, 2]
and hence y € B([0,z]). We conclude that B(F) N [0,z] = B([0,z]). It follows that
C(]0, z]) = B(]0,2]) NS([0,2]) = B(E)N[0,z] N S(E)N0,z] = C(E) N0, z].

Theorem 3.5. Let z be a central element of a lattice effect algebra 2 and M be a block

of E. Then
(i) M=

)

[0,2]) x (M N[0,2]),
(i) ),

MN[0, 2]

S(E) = 5([0,2]) x S(]o,

(iii) B(E) = B([0,2]) x B([0,2']),
(iv) C(E) = C([0,2]) x C([0, 2']),

Proof. (i) z € C(FE), therefore E 2 [0, z]N[0, 2’], [5]. Since @, zero and unit in [0, z] x [0, 2’|
are defined componentwise, <, V and A are defined componentwise as well. It follows that
(a,b), (c,d) € [0, z] x [0, 2’] are compatible iff a <> ¢ and b <> d. Thus every maximal subset
M of pairwise compatible elements of the product is a product of maximal subsets M; and
M, of pairwise compatible elements in [0, z] and [0, 2’], respectively. Combining this with
the fact that M N0, z] is a block of [0, z] and M N[0, 2] is a block of [0, z'] we obtain the
proof of (i).

||z ||z IIZ =
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(ii) Since (a,b)A(a’,b') =0iff ana’ =0and bAY = 0iff a € S([0, z]) and b € S([0, 2']),
we obtain that S(E) = S(]0, z]) x S([0, ]).

(iii) is a consequence of (i).

(iv) Since C(E) = B(E)NS(F) for every lattice effect algebra E, we conclude that (iv)
is a consequence of (ii) and (iii).

4 SHARP ELEMENTS OF A LATTICE EFFECT ALGEBRAS

Assume that F is a lattice effect algebra. In general, if for elements a,b < ¢ the sum
a @ b exists then the inequality a & b < ¢ need not hold.

Example 4.1. Let £ = {0,a,2a,3a,1 = 4a} be a chain. Then a,2a < 2a but a®2a £ 2a.

Theorem 4.2. For every element c of a lattice effect algebra E the following conditions
are equivalent:

(i) ce S(E).

(ii) For all a,b € [0,c] witha < b thea® b < c.

Proof. (i) = (ii): since a Ab < a Vb < ¢ and every chain in F is in a block of E, there
is a block M of E such that {a Ab,a V b,c} C M. By Theorem 3.2, S(E)NM = C(M),
hence c is central in M. Further, a ®b = (a Ab) @ (a V b). Because a Ab,a Vb < c we
conclude that (a Ab) @ (aVb)=a®b<c.

(ii) = (i): see [5].

Theorem 4.3. For every element z of an Archimedean lattice effect algebra E the fol-
lowing conditions are equivalent:
(i) z€ S(E).

(ii) fz < zandnx =z @ --- ® x (n times) exists then nx < z.

Proof. (i) = (ii): This follows by induction using Theorem 4.2.

(ii) = (i): Put z = z A 2/. By (ii) we have nx < z < zV 2z = (2 A2') = ' for every
defined nx. It follows that x = 0, because otherwise (n + 1)x is defined for every n with
defined nxz. This contradicts to the Archimedean property of E.
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