CENTRAL ELEMENTS, BLOCKS AND SHARP ELEMENTS OF LATTICE EFFECT ALGEBRAS

Gejza Jenča, Ivica Marinová, Zdenka Riečanová

ABSTRACT. For every central element z of a lattice effect algebra E, the interval [0, z] with the \oplus operation inherited from E and the new unity z is a lattice effect algebra in its own right. We show connections between blocks, sharp elements and central elements of [0, z] and those of E. We prove that except for central elements, the intervals [0, z] are closed with respect to the \oplus -operation also for all sharp elements

1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure providing an instrument for studying quantum effects that may be unsharp. Kôpka [10] introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the primary operation. For the connection between effect algebras and D-posets we refer to [1] and [12].

In recent years effect algebras [2] or equivalent in some sense D-posets [10], [11] have been studied as carriers of states or probability measures in the quantum or fuzzy probability theory.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including Boolean algebras), [1], [11]. Moreover, every lattice effect algebra E is a union of MV-effect algebras (effect algebras which can be organized into MV-algebras), the set of all sharp elements of E is an orthomodular lattice and the center of E is a Boolean algebra.

Definition 1.1. A structure $(E; \oplus, 0, 1)$ is called an *effect-algebra* if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on E which satisfies the following conditions for any $a, b, c \in E$:

(Ei) $b \oplus a = a \oplus b$ if $a \oplus b$ is defined,

(Eii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined,

(Eiii) for every $a \in E$ there exists a unique $b \in E$ such that $a \oplus b = 1$ (we put a' = b), (Eiv) if $1 \oplus a$ is defined then a = 0.

We often denote the effect algebra $(E; \oplus, 0, 1)$ briefly by E. In every effect algebra E we can define the partial operation \ominus and the partial order \leq by putting

 $a \leq b$ and $b \ominus a = c$ iff $a \oplus c$ is defined and $a \oplus c = b$.

¹⁹⁹¹ Mathematics Subject Classification. 03G12, 06C15, 60B99, 81P10.

Key words and phrases. effect algebras, blocks, center, block-finite effect algebras, states, probabilities. The paper has been supported by grant 1/7625/20 of MŠ SR.

Since $a \oplus c = a \oplus d$ implies c = d, the \ominus and the \leq are well defined. If E with the defined partial order is a lattice (a complete lattice) then $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* (a *complete effect algebra*). For more details we refer the reader to [1] and the references given there.

Definition 1.2. Let $(E; \oplus, 0, 1)$ be an effect algebra. $Q \subseteq E$ is called a *sub-effect algebra* of E iff

- (i) $1 \in Q$,
- (ii) if $a, b, c \in E$ with $a \oplus b = c$ and out of a, b, c at least two elements are in Q then $a, b, c \in Q$.

Note that if Q is a sub-effect algebra of E then Q with inherited operation \oplus is an effect algebra in its own right.

Recall that elements a, b of a lattice effect algebra $(E; \oplus, 0, 1)$ are called *compatible* (written $a \leftrightarrow b$) iff $a \lor b = a \oplus (b \ominus (a \land b))$ (see [11]). $P \subseteq E$ is a set of pairwise compatible elements if $a \leftrightarrow b$ for all $a, b \in P$. For $a \in E$ and $Q \subseteq E$ we will write $a \leftrightarrow Q$ iff $a \leftrightarrow q$ for all $q \in Q$. $M \subseteq E$ is called a block of E iff M is a maximal subset of pairwise compatible elements. Every block of a lattice effect algebra E is a sub-effect algebra and a sub-lattice of E and E is a union of its blocks (see [13]). Lattice effect algebra with a unique block is called an MV-effect algebra. Every block of a lattice effect algebra is an MV-effect algebra in its own right. In [13] it was proved that every block M of a lattice effect algebra E is closed with respect to all existing infima and suprema of subsets of M. We say that M is a full sub-lattice of E.

A lattice effect algebra E is a *horizontal sum* of blocks if $A \cap B = \{0, 1\}$ holds for every pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an *atom* if $0 \le b < a$ implies b = 0. E is called atomic if for every nonzero element $x \in E$ there is an atom $a \in E$ with $a \le x$.

An effect algebra E is called *Archimedean* if for no nonzero element $e \in E$, $ne = e \oplus e \oplus \cdots \oplus e$ (*n* times) exists for all positive integer *n*. We write $\operatorname{ord}(e) = n_e \in N$ if n_e is the greatest integer such that $n_e e$ exists in E. Every complete effect algebra is Archimedean, [20].

Definition 1.3. Let $(E; \oplus_E, 0_E, 1_E)$ and $(F; \oplus_F, 0_F, 1_F)$ be effect algebras. A bijective map $\varphi: E \to F$ is called an *isomorphism* if

(i) $\varphi(1_E) = 1_F$,

(ii) for all $a, b \in E$: $a \leq b'$ iff $\varphi(a) \leq (\varphi(b))'$ in which case $\varphi(a \oplus b) = \varphi(a) \oplus \varphi(b)$. We write $E \cong F$. Sometimes we identify E with $F = \varphi(E)$.

2. BLOCKS OF LATTICE EFFECT ALGEBRAS AND OF SETS OF SHARP ELEMENTS

Assume that $(L; \lor, \land, \bot, 0, 1)$ is an orthomodular lattice [9]. Then L becomes a lattice effect algebra if we define that $a \oplus b$ exists iff $a \leq b^{\perp}$ and then $a \oplus b = a \lor b$, [1], [10]. In an orthomodular lattice L, two elements $a, b \in L$ are compatible iff $a = (a \land b) \lor (a \land b^{\perp})$ iff $b = (a \lor b) \lor (a' \land b)$, [9]. If L is the effect algebra derived from the orthomodular lattice L then for $b \in L$ we have $1 = b \lor b^{\perp} = b \oplus b^{\perp}$, since $b \leq (b^{\perp})^{\perp}$ and $b \land b^{\perp} = 0$. Thus $b^{\perp} = 1 \oplus b = b'$ for all $b \in L$. Further, elements a, b of the orthomodular lattice L are compatible iff $a = (a \land b) \lor (a \land b^{\perp})$ iff $b = (a \land b) \lor (a^{\perp} \land b)$ which gives $a = (a \land b) \oplus (a \land b')$ and $b = (b \land a) \oplus (a' \land b)$. It follows that $a \land b' = a \ominus (a \land b)$ and $(a \land b') = b \ominus (a \land b)$ which gives $(a \land b') \lor (a' \land b) = (a \land b') \oplus (a' \land b) = (a \ominus (a \land b)) \oplus (b \ominus (a \land b))$ and hence $a \lor b = (a \land b) \oplus (a \ominus (a \land b)) \oplus (b \ominus (a \land b)) = a \oplus (b \ominus (a \land b))$ which gives $a \leftrightarrow b$. Thus $a, b \in L$ are compatible in an orthomodular lattice L iff a, b are compatible in the derived effect algebra L.

In [8] has been shown that in every lattice effect algebra E the subset $S(E) = \{x \in E \mid x \land x' = 0\}$ of all sharp elements of E is an orthomodular lattice being a sub-lattice and a sub-effect algebra of E.

According to the above proved statement on the compatible pairs in an orthomodular lattice and the derived effect algebra, it is clear that for every block M of a lattice effect algebra E the intersection $M \cap S(E)$ is a set of pairwise compatible elements in the orthomodular lattice S(E) and the derived lattice effect algebra S(E) as well. In spite of this fact $M \cap S(E)$ in general is not a block of S(E), as the following example shows.

Example 2.1. Let $E = \{0, a, a', b, 1\}$ where $a \oplus a' = 1 = b \oplus b$. Evidently $S(E) = \{0, a, a', 1\}$. Further $\{0, b, 1\}$ is a block of E, while $M \cap S(E) = \{0, 1\}$ is not a block of S(E), because S(E) is a Boolean algebra.

3. Central elements in a lattice effect algebras

An element z of an effect algebra E is called *central* if $x = (x \land z) \lor (x \land z')$ for all $x \in E$. The *center* C(E) of E is the set of all central elements of E, [5]. If E is a lattice effect algebra then $z \in E$ is central iff $z \land z' = 0$ and $z \leftrightarrow x$ for all $x \in E$, [12]. Thus in a lattice effect algebra E, $C(E) = B(E) \cap S(E)$, where $B(E) = \bigcap \{M \subseteq E \mid M \text{ is a block of } E\}$ is called a *compatibility center* of E and $S(E) = \{z \in E \in z \land z' = 0\}$ is the set of all *sharp* elements of E. Evidently, $B(E) = \{x \in E \mid x \leftrightarrow y \text{ for all } y \in E\}$. In every lattice effect algebra E, S(E) is an orthomodular lattice, [8] and B(E) is an MV-effect algebra. Hence C(E) is a Boolean algebra, [5]. Moreover, S(E), B(E), C(E) and all blocks of E are full sub-lattices of a lattice effect algebra E, which means that they are closed with respect to all infima and suprema existing in E, [15]. It follows that if E is a complete effect algebra then S(E), B(E), C(E) and every block of E are also complete. Further, B(E), S(E)and C(E) are sub-effect algebras of E, [8],[15].

Assume that $z \in E$ is a central element of the lattice effect algebra E. Then the interval [0, z] is a lattice effect algebra with the unit z and the partial operation \oplus inherited from E. It is because for $x, y \leq z$ with $x \oplus y$ defined in E we have $x \oplus y \leq z$, [5]. Further, $z = (x \oplus x') \land z = (x \land z) \oplus (x' \land z)$ for all $x \in E$. It follows that for $y \leq z$ we have $z = y \oplus (y' \land z)$ and hence $z \ominus y = y' \land z$, [17].

By the definition of central element and the properties mentioned above it is clear that $z \in E$ is central iff $E \cong [0, z] \times [0, z']$ where $[0, z] \times [0, z']$ is a cartesian product with "componentwise" defined operations, which means that for $(a, b), (c, d) \in [0, z] \times [0, z']$ we have $(a, b) \oplus (c, d) = (a \oplus c, b \oplus d)$ iff $a \leq c'$ and $b \leq d'$ and (0, 0) is the zero and (1, 1) is the unit in the product, [5].

Theorem 3.1. If z is a central element of a lattice effect algebra E then $S([0, z]) = S(E) \cap [0, z]$.

Proof. For every $y \leq z$ we have $z = (y \oplus y') \land z = (y \land z) \oplus (y' \land z) = y \oplus (y' \land z)$, [15].

It follows that $y \in S[0, z]$ iff $y \wedge (y' \wedge z) = 0$ iff $y \wedge y' = 0$, as $y \wedge z = y$. This proves the theorem.

Theorem 3.2. Let *E* be a lattice effect algebra, *M* be a block of *E* and $a \in E$.

- (i) If a is an atom of M then a is an atom of E.
- (ii) If a is an atom of E and $a \in C(E)$ then $[a, 1] \cap [0, a'] = \emptyset$ and $E = [a, 1] \cup [0, a']$.
- (iii) C(M) = S(M), B(M) = M and $S(M) = S(E) \cap M$.

Proof. (i) Let 0 < b < a. Then for every $x \in M$ we have $a \leftrightarrow x$ and hence $x \lor a = a \oplus (x \ominus (a \land x))$. It follows that either $a \leq x$ or $x \lor a = a \oplus x$ which gives $a \leq x'$. Thus either $b \leq x$ or $b \leq x'$, which implies that $b \leftrightarrow x$, and by maximality of blocks we obtain that $b \in M$, a contradiction.

(ii) Since $C(E) = B(E) \cap S(E)$ we have $a \wedge a' = 0$ and hence $[a, 1] \cap [0, a'] = \emptyset$. Moreover, $x \leftrightarrow a$ for all $x \in E$, which implies that $a \leq x$ or $a \leq x'$. Thus $E = [a, 1] \cup [0, a']$.

(iii) B(M) = M by the definition of blocks. Further, if $x \in M$ then $x' \in M$ and $x \wedge x' \in M$. Hence $S(M) = S(E) \cap M$ and $C(M) = B(M) \cap S(M) = M \cap S(M) = S(M)$.

Theorem 3.3. For every block M and every central element z of a lattice effect algebra E the intersection $M \cap [0, z]$ is a block of [0, z].

Proof. For every $x, y \in M$ we have $x \leftrightarrow y \wedge z$ since $z \leftrightarrow E$ and $x \leftrightarrow y$. By maximality of blocks we obtain that $M_z = \{x \wedge z \mid y \in M\} \subseteq M$, hence $M_z = M \cap [0, z]$. Assume that $u \in E$ with $u \leq z$ and $u \leftrightarrow M_z$. Then $u \leftrightarrow x$ for all $x \in M$ because $u \leq z \leq v'$ for every $v \leq z'$ and $u \leftrightarrow x \wedge z$ which gives $u \leftrightarrow x = (x \wedge z) \oplus (x \wedge z')$. It follows that $u \in M \cap [0, z]$. By maximality of blocks, we conclude that $M \cap [0, z]$ is a block of [0, z].

Corollary 3.4. For every central element z of a lattice effect algebra E $B([0,z]) = B(E) \cap [0,z]$ and $C([0,z]) = C(E) \cap [0,z].$

Proof. By Theorem 3.3 $B(E) \cap [0, z] = \bigcap \{M \cap [0, z] \mid M \text{ is a block of } E\} \supseteq B([0, z]).$ Conversely, for $y \in B(E) \cap [0, z]$ we have $y \in [0, z]$ and $y \leftrightarrow E$ which gives $y \leftrightarrow [0, z]$ and hence $y \in B([0, z])$. We conclude that $B(E) \cap [0, z] = B([0, z])$. It follows that $C([0, z]) = B([0, z]) \cap S([0, z]) = B(E) \cap [0, z] \cap S(E) \cap [0, z] = C(E) \cap [0, z].$

Theorem 3.5. Let z be a central element of a lattice effect algebra E and M be a block of E. Then

- (i) $M \cong (M \cap [0, z]) \times (M \cap [0, z']),$
- (ii) $S(E) \cong S([0, z]) \times S([0, z']),$
- (iii) $B(E) \cong B([0, z]) \times B([0, z']),$
- (iv) $C(E) \cong C([0, z]) \times C([0, z']),$

Proof. (i) $z \in C(E)$, therefore $E \cong [0, z] \cap [0, z']$, [5]. Since \oplus , zero and unit in $[0, z] \times [0, z']$ are defined componentwise, \leq , \vee and \wedge are defined componentwise as well. It follows that $(a, b), (c, d) \in [0, z] \times [0, z']$ are compatible iff $a \leftrightarrow c$ and $b \leftrightarrow d$. Thus every maximal subset M of pairwise compatible elements of the product is a product of maximal subsets M_1 and M_2 of pairwise compatible elements in [0, z] and [0, z'], respectively. Combining this with the fact that $M \cap [0, z]$ is a block of [0, z] and $M \cap [0, z']$ is a block of [0, z'] we obtain the proof of (i).

(ii) Since $(a, b) \land (a', b') = 0$ iff $a \land a' = 0$ and $b \land b' = 0$ iff $a \in S([0, z])$ and $b \in S([0, z'])$, we obtain that $S(E) \cong S([0, z]) \times S([0, z'])$.

(iii) is a consequence of (i).

(iv) Since $C(E) = B(E) \cap S(E)$ for every lattice effect algebra E, we conclude that (iv) is a consequence of (ii) and (iii).

4 Sharp elements of a lattice effect algebras

Assume that E is a lattice effect algebra. In general, if for elements $a, b \leq c$ the sum $a \oplus b$ exists then the inequality $a \oplus b \leq c$ need not hold.

Example 4.1. Let $E = \{0, a, 2a, 3a, 1 = 4a\}$ be a chain. Then $a, 2a \leq 2a$ but $a \oplus 2a \leq 2a$.

Theorem 4.2. For every element c of a lattice effect algebra E the following conditions are equivalent:

(i) $c \in S(E)$.

(ii) For all $a, b \in [0, c]$ with $a \leq b'$ the $a \oplus b \leq c$.

Proof. (i) \implies (ii): since $a \land b \leq a \lor b \leq c$ and every chain in E is in a block of E, there is a block M of E such that $\{a \land b, a \lor b, c\} \subseteq M$. By Theorem 3.2, $S(E) \cap M = C(M)$, hence c is central in M. Further, $a \oplus b = (a \land b) \oplus (a \lor b)$. Because $a \land b, a \lor b \leq c$ we conclude that $(a \land b) \oplus (a \lor b) = a \oplus b \leq c$.

(ii)
$$\implies$$
 (i): see [5].

Theorem 4.3. For every element z of an Archimedean lattice effect algebra E the following conditions are equivalent:

- (i) $z \in S(E)$.
- (ii) If $x \leq z$ and $nx = x \oplus \cdots \oplus x$ (*n* times) exists then $nx \leq z$.

Proof. (i) \implies (ii): This follows by induction using Theorem 4.2.

(ii) \implies (i): Put $x = z \wedge z'$. By (ii) we have $nx \leq z \leq z \vee z' = (z \wedge z')' = x'$ for every defined nx. It follows that x = 0, because otherwise (n + 1)x is defined for every n with defined nx. This contradicts to the Archimedean property of E.

References

- [1] A. Dvurečenskij and S. Pulmannová, *New Trends in Quantum Structures*, Kluwer Academic Publishers, Dordrecht, Boston, London and Ister Science, Bratislava, 2000.
- [2] D. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- [3] G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel, Boston, Berlin, 1998.
- [4] R.J. Greechie, Orthomodular lattices admitting no states, J. Combinat. Theory A 10 (1971), 119–132.
- [5] R.J. Greechie, D. Foulis and S. Pulmannová, The center of an effect algebra, Order 12 (1995), 91–106.
- [6] P. Hájek, Mathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- U. Höhle and E.P. Klement (eds.), Non-classical Logics and their Applications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
- [8] G. Jenča and Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29.
- [9] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983.
- [10] F. Kôpka, D-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83-87.
- [11] F. Kôpka, F. and F. Chovanec, Boolean D-posets, Internat. J. Theor. Phys. 34 (1995), 1297–1302.

- [12] Z. Riečanová, Subalgebras, intervals and central elements of generalized effect algebras, Internat. J. Theor. Phys. 38 (1999), 3209–3220.
- [13] Z. Riečanová, Generalization of blocks for D-lattices and lattice ordered effect algebras, Internat. J. Theor. Phys. 39 (2000), 231–237.
- [14] Z. Riečanová, Lattice effect algebras with (o)-continuous faithful valuations, Fuzzy Sets and systems 124 (2001), 321–327.
- [15] Z. Riečanová, Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 525–532.
- [16] Z. Riečanová, Distributive atomic effect algebras, Demonstratio Mathematica 36 (2003) (to appear).
- [17] Z. Riečanová, Continuous lattice effect algebras admitting order continuous states, Fuzzy Sets and Systems (2002) (to appear).
- [18] Z. Riečanová, Proper effect algebras admitting no states, Internat. J. Theor. Phys. 40 (2001), 1683– 1691.
- [19] Z. Riečanová, Smearings of states defined on sharp elements onto effect algebras, Internat J. Theor. Phys. 41 (2002), 1511–1524.
- [20] Z. Riečanová, Archimedean and block-finite effect algebras, Demonstratio Math. 33 (2000), 443–452.

DEPARTMENT OF MATHEMATICS,
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY,
SLOVAK TECHNICAL UNIVERSITY,
ILKOVIČOVA 3,
812 19 BRATISLAVA, SLOVAK REPUBLIC *E-mail address*: zriecan@elf.stuba.sk