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Abstract. We prove that every MV-effect algebra M is, as an effect algebra,
a homomorphic image of its R-generated Boolean algebra. We characterize
central elements of M in terms of the constructed homomorphism.

1. Definitions and basic relationships

An effect algebra is a partial algebra (E;⊕, 0, 1) with a binary partial operation
⊕ and two nullary operations 0, 1 satisfying the following conditions.

(E1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(E2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c) are defined

and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a⊕ a′ = 1.
(E4) If a⊕ 1 exists, then a = 0

Effect algebras were introduced by Foulis and Bennett in their paper [5]. In-
dependently, Kôpka and Chovanec introduced an essentially equivalent structure
called D-poset (see [10]). Another equivalent structure, called weak orthoalgebras
was introduced by Giuntini and Greuling in [6]. We refer to [4] for more information
on effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra (E;⊕, 0, 1) by E. In an effect algebra E,
we write a ≤ b iff there is c ∈ E such that a⊕ c = b. It is easy to check that every
effect algebra is cancellative, thus ≤ is a partial order on E. In this partial order, 0
is the least and 1 is the greatest element of E. Moreover, it is possible to introduce
a new partial operation 	; b	 a is defined iff a ≤ b and then a⊕ (b	 a) = b. It can
be proved that a⊕ b is defined iff a ≤ b′ iff b ≤ a′. Therefore, it is usual to denote
the domain of ⊕ by ⊥. If a ⊥ b, we say that a and b are orthogonal.

Let E1, E2 be effect algebras. A mapping φ : E1 7→ E2 is called a homomorphism
iff φ(1) = 1 and a ⊥ b implies that φ(a) ⊥ φ(b) and then φ(a⊕ b) = φ(a)⊕ φ(b). A
homomorphism φ is an isomorphism iff φ is bijective and φ−1 is a homomorphism.
Note that even if both E1 and E2 are lattice ordered, a homomorphism need not
to preserve joins and meets.

An MV-algebra (c.f. [2], [12]) is a (2, 1, 0)-type algebra (M ;�,¬, 0), such that �
satisfying the identities (x�y)�z = x� (y�z), x�z = y�x, x�0 = x, ¬¬x = x,
x� ¬0 = ¬0 and

x� ¬(x� ¬y) = y � ¬(y � ¬x).
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An MV-effect algebra is a lattice ordered effect algebra M in which, for all a, b ∈M ,
(a ∨ b) 	 a = b 	 (a ∧ b). It is proved in [3] that there is a natural, one-to one
correspondence between MV-effect algebras and MV-algebras given by the following
rules. Let (M,⊕, 0, 1) be an MV-effect algebra. Let � be a total operation given by
x� y = x⊕ (x′ ∧ y). Then (M,�, 0, 1) is an MV-algebra. Similarly, let (M,�, 0, 1)
be an MV-algebra. Restrict the operation � to the pairs (x, y) satisfying x ≤ y′

and call the new partial operation ⊕. Then (M,⊕, 0, 1) is an MV-effect algebra.
Among lattice ordered effect algebras, MV-effect algebras can be characterized

in a variety of ways. Three of them are given in the following proposition.

Proposition 1. [1], [3] Let E be a lattice ordered effect algebra. The following are
equivalent

(a) E is an MV-effect algebra.
(b) For all a, b ∈ E, a ∧ b = 0 implies a ⊥ b.
(c) For all a, b ∈ E, a	 (a ∧ b) ⊥ b.
(d) For all a, b ∈ E, there exist a1, b1, c ∈ E such that a1 ⊕ b1 ⊕ c exists,

a1 ⊕ c = a and b1 ⊕ c = b.

LetD be a bounded distributive lattice. Up to isomorphism, there exists a unique
Boolean algebra B(D) such that D is a 0, 1-sublattice of B(D) and B generates
B(D) as a Boolean algebra. This Boolean algebra is called R-generated Boolean
algebra. We refer to [7], section II.4, for an overview of results concerning R-
generated Boolean algebras. See also [9] and [11]. For every element x of B(D),
there exists a finite chain x1 ≤ . . . ≤ xn in D such that x = x1 + . . .+ xn. Here, +
denotes the symmetric difference, as in Boolean rings. We then say than {xi}ni=1 is
a D-chain representation of x. It is easy to see that every element of B(D) has a
D-chain representation of even length.

Theorem 2. (Main result). Let M be an MV-effect algebra. The mapping φM :
B(M)→M given by

φM (x) =
n⊕

i=1

(x2i 	 x2i−1),

where {xi}2ni=1 is a M -chain representation of x, is a surjective homomorphism of
effect algebras.

2. B(M)

Let L be a lattice. An element a of L is join-irreducible iff a = b∨ c implies that
a = b or a = c; it is meet-irreducible iff a = b ∧ c implies that a = b or a = c. The
set of all nonzero join-irreducible elements of a lattice L is denoted by J(L), the
set of all non-unit meet-irreducible elements of a lattice L is denoted by M(L).

Let L be a finite distributive lattice. Then the mapping r : L→ 2J(L) given by
r(x) = {a ∈ J(L) : a ≤ x} is a 0, 1-embedding of L into 2J(L). It is easy to check
that a ∈ J(L) iff {x ∈ L : x 6≥ a} is a prime ideal and then m(a) =

∨{x ∈ L :
x 6≥ a} ∈M(L). By a dual argument, it is easy to see that a 7→ m(a) is a bijection
from J(L) onto M(L). Moreover, for every maximal chain C of L the mapping πC
given by πC(a) =

∧{x ∈ C : x ≥ a} is a bijection from the set of all join-irreducible
elements onto C (see [7], Corollary II.1.14). Note that πC maps nonzero elements
onto nonzero elements.
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In what follows, � denotes the usual covering relation on a poset, that means,
ia � b iff b is a maximal element of the set {x : x < a}.
Lemma 3. Let L be a finite distributive lattice, let C be a maximal chain in L, let
a ∈ J(L). Let x ∈ C, πC(a) � x. Then a ∨ x = πC(a) and a ∧ x = a ∧m(a).

Proof. We have πC(a) ∧ (a ∨ x) = (πC(a) ∧ a) ∨ (πC(a) ∧ x) = a ∨ x, so πC(a) ≥
a ∨ x ≥ x. Since πC(a) � x, we have either πC(a) = a ∨ x or a ∨ x = x. However,
a ∨ x = x contradicts with πC(a) 6= x, hence πC(a) = a ∨ x.

Since x 6≥ a, we have x ≤ m(a) and a∧x ≤ a∧m(a) ≤ a. Since a∨x = πC(a) � x,
a � a ∧ x. Therefore, a ∧ x = a ∧ m(a) or a ∧ m(a) = a. Since a 6≤ m(a),
a ∧ x = a ∧m(a). �

Corollary 4. Let L be a finite sublattice of an MV-effect algebra M . Let C be a
maximal chain of L, let a ∈ J(L). Let x ∈ C, πC(a) �L x. Then πC(a) 	 x =
a	 (a ∧m(a)).

Proof. Since M is a distributive lattice, L is distributive. By Lemma 3, we have
a ∨ x = πC(a) and a ∧ x = a ∧m(a). This implies that πC(a)	 x = (a ∨ x)	 x =
a	 (a ∧ x) = a	 (a ∧m(a)). �

Corollary 5. Let L be a finite sublattice of an MV-effect algebra M . Let C1, C2

be maximal chains of L. There exists a bijection b : C1 → C2 such that, for all
x1, x2 ∈ C1 with x2 �L x1, x2 	 x1 = b(x2)	 y, where y ∈ C2 and b(x2) �L y.

Proof. Since M is distributive, L is distributive. Let us put b(x) = πC2(π−1
C1

(x)).
Obviously, b is a bijection. Write a = π−1

C1
(x2). By Corollary 4, πC1(a) 	 x1 =

x2	x1 = a	a∧m(a). Similarly, by Corollary 4, b(x2)	y = πC2(a)	y = a	a∧m(a).
Thus, x2 	 x1 = b(x2)	 y. �

Lemma 6. Let L be a finite 0, 1-sublattice of an MV-effect algebra M . Then the
mapping ψL : 2J(L) →M given by

ψL(X) =
⊕

a∈X
a	 (a ∧m(a))

is a homomorphism of effect algebras and, for all x ∈ L, ψL(r(x)) = x.

Proof. By definition, ψL(∅) = 0. Let x ∈ L and write Lx = {y ∈ L : y ≤ x}.
Note that r(x) = J(Lx). Let C = {0 = x0, x1, . . . , xn = x} with xi+1 �L xi be a
maximal chain of Lx. Then the sum

n⊕

i=1

xi 	 xi−1

exists in M and equals x. By Corollary 4,

xi 	 xi−1 = π−1
C (xi)	 (π−1

C (xi) ∧m(π−1
C (xi)).

Since πC is a bijection, we have r(x) = {π−1
C (xi) : i ∈ {1, . . . , n}}, hence ψL(r(x))

exists and equals x. As a consequence, ψL(2J(L)) = ψL(r(1)) = 1. The additivity
of ψL is trivial. �

Since, for every finite distributive lattice L, r(L) R-generates 2J(L), the injective
mapping r : L → 2J(L) uniquely extends to an isomorphism of Boolean algebras
r̂ : B(L)→ 2J(L).
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Lemma 7. Let L be a finite 0, 1-sublattice of an MV-effect algebra M . Let ψL, r̂
be the mappings given above. Then ψL ◦ r̂ is a homomorphism of effect algebras
satisfying

ψL ◦ r̂(x1 + . . .+ x2n) =
n⊕

i=1

(x2i 	 x2i−1)

for every chain x1 ≤ . . . ≤ x2n of L.

Proof. Evidently, ψL ◦ r̂ : B(L) → M is a homomorphism of effect algebras. Let
x1 ≤ . . . ≤ x2n be a chain in L. Then

ψL(r̂(x1 + . . .+ x2n)) = ψL(r̂(x1) + . . .+ r̂(x2n)) = ψL(r(x1) + . . .+ r(x2n)).

Since r is a lattice homomorphism, r(x1) ≤ . . . ≤ r(x2n). Thus, in the Boolean
algebra 2J(L) we obtain

r(x1) + . . .+ r(x2n) =
n⊕

i=1

(r(x2i)	 r(x2i−1)).

Finally, by Lemma 6,

ψL(r(x1) + . . .+ r(x2n)) =
n⊕

i=1

ψL(r(x2i))	 ψL(r(x2i−1)) =

n⊕

i=1

(x2i 	 x2i−1) = φL(x1 + . . . x2n).

�

Proof of the main result. Let x1 ≤ . . . ≤ x2n, y1 ≤ . . . ≤ y2m be two chains of M .
Let L be the 0, 1-sublattice of M generated by {x1, . . . , x2n, y1, . . . , y2m}. Then
B(L) is a Boolean subalgebra of B(M), {x1, . . . , x2n, y1, . . . , y2m} ⊆ B(L) and, by
Lemma 7, φL : B(L)→M is a homomorphism of effect algebras.

Let us prove that φM is well defined. Suppose that x1+. . .+x2n = y1+. . .+y2m.
By Lemma 7,

⊕n
i=1(x2i	 x2i−1) =

⊕n
i=1(y2i	 y2i−1), hence φM is well defined on

B(L) and hence on the whole set M . Moreover, φL is just the restriction of φM to
B(L).

Suppose now that x = x1 + . . .+ x2n ⊥ y1 + . . .+ y2m = y. Again, by Lemma 7,
φL(x) ⊥ φL(y) and φL(x⊕ y) = φL(x)⊕ φL(y). Obviously, φM (1) = 1.

For the proof of surjectivity, it suffices to observe that, for all x ∈ M , φM (x) =
x. �

Example 8. Let M be MV-effect algebra, which is totally ordered. By [7], Corol-
lary II.4.19, B(M) is isomorphic to the Boolean algebra of all subsets of M of the
form [a1, b1)∪̇ . . . ∪̇[an, bn). Here, we denote [a, b) = {x ∈M : a ≤ x < b}. The φM
is then given by

φM ([a1, b1)∪̇ . . . ∪̇[an, bn)) = (b1 	 a1)⊕ . . .⊕ (bn 	 an).

Example 9. In this example, [0, 1] denotes the closed real unit interval. Let C[0,1]

be the MV-effect algebra of all real continuous functions f : [0, 1] → [0, 1]. Let B
be the Boolean algebra ∏

x∈[0,1]

B([0, 1]),
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where B([0, 1]) is the Boolean algebra of semiopen intervals described in Example
8. It is obvious that C[0,1], as a lattice, can be embedded into B by a mapping
γ : E → B given by γ(f) = ([f(x), 0))x∈[0,1]. The image of E under γ then
generates a Boolean subalgebra of B, which we can identify with B(C[0,1]). The
φC[0,1] : B(C[0,1])→ C[0,1] mapping can then be constructed as follows.

Let (Ax)x∈[0,1] ∈ B(C[0,1]). Fix x ∈ [0, 1] and write Ax = [a1, b1)∪̇ . . . ∪̇[an, bn).
The value of the continuous function φC[0,1]((Ax)x∈[0,1]) at x is then equal to (b1 	
a1)⊕ . . .⊕ (bn 	 an).

An element x of an effect algebra E is called central iff x ∧ x′ = 0 and every
element a ∈ E admits a decomposition a = a1 ⊕ a2, where a1 ≤ x, a2 ≤ x′. There
is a natural correspondence between complementary pairs of central elements and
direct decompositions of E. The set of all central elements of E is denoted by C(E).
Central elements of effect algebras were introduced in [8]. In an MV-algebra M ,
we have x ∈ C(M) iff x ∧ x′ = 0.

Theorem 10. Let M be an MV-effect algebra. Then φ−1
M (x) = {x} iff x ∈ C(M).

Proof.
=⇒: Suppose φ−1

M (x) = {x} and that x 6∈ C(M). Then x∧x′ > 0 and x∨x′ < 1.
Let L = {0, x ∧ x′, x, x′, x ∨ x′, 1}. Then L is a 0, 1-sublattice of M and we have
J(L) = {1, x, x′, x ∧ x′}, M(L) = {x ∨ x′, x′, x, 0}. The m mapping for L is given
by the following table.

a 1 x x′ x ∧ x′
m(a) x ∨ x′ x′ x 0

We have r(x) = {x, x ∧ x′}. Consider the set Y = {1, x} ⊆ J(L). We have

ψL(Y ) =(1	 1 ∧m(1))⊕ (x	 x ∧m(x)) = (1	 (x ∨ x′))⊕ (x	 (x ∧ x′)) =

(x ∧ x′)⊕ (x	 (x ∧ x′)) = x.

Thus, Y ∈ ψ−1
L (x). Since φ−1

M (x) = φ−1
L (x) = {x}, ψ−1

L (x) = {r(x)}. This implies
that Y = r(x) and x ∧ x′ = 1, which is impossible.
⇐=: Suppose that x ∈ C(M) and that there exists y ∈ B(M) such that x 6= y

and φM (y) = x. There exists a finite 0, 1-sublattice L of M such that x, x′, y ∈ B(L)
and, since 2J(L) and B(L) are isomorphic, the set Y = r̂−1(y) ⊆ J(L) satisfies
ψL(Y ) = x and Y 6= r(x).

Suppose that there exists a ∈ Y , a 6∈ r(x). Since x ∈ C(M), we have x ∧ x′ = 0
and x ∨ x′ = 1; hence r(x) ∩ r(x′) = ∅ and r(x) ∪ r(x′) = J(L). Therefore,
a 6∈ r(x) implies that a ∈ r(x′) and a ≤ x′, so a 	 (a ∧m(a)) ≤ x′. Since a ∈ Y ,
a	 (a∧m(a)) ≤ ψL(Y ) = x. This implies that a	 (a∧m(a)) ≤ x∧ x′ = 0 and we
obtain a = a ∧m(a). This is a contradiction.

Suppose that there exists a 6∈ Y , a ∈ r(x). This implies that a 6∈ r(x′), a ∈
J(L) \ Y and we have ψL(J(L) \ Y ) = x′. By above paragraph, this leads to a
contradiction. �

References

[1] M.K. Bennett and D.J. Foulis. Phi-symmetric effect algebras. Foundations of Physics,
25:1699–1722, 1995.

[2] C.C. Chang. Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc., 89:74–80,
1959.
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