BOOLEAN ALGEBRAS R-GENERATED BY MV-EFFECT ALGEBRAS

GEJZA JENČA

Abstract

We prove that every MV-effect algebra M is, as an effect algebra, a homomorphic image of its R-generated Boolean algebra. We characterize central elements of M in terms of the constructed homomorphism.

1. Definitions and basic relationships

An effect algebra is a partial algebra $(E ; \oplus, 0,1)$ with a binary partial operation \oplus and two nullary operations 0,1 satisfying the following conditions.
(E1) If $a \oplus b$ is defined, then $b \oplus a$ is defined and $a \oplus b=b \oplus a$.
(E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ are defined, then $b \oplus c$ and $a \oplus(b \oplus c)$ are defined and $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
(E3) For every $a \in E$ there is a unique $a^{\prime} \in E$ such that $a \oplus a^{\prime}=1$.
(E4) If $a \oplus 1$ exists, then $a=0$
Effect algebras were introduced by Foulis and Bennett in their paper [5]. Independently, Kôpka and Chovanec introduced an essentially equivalent structure called D-poset (see [10]). Another equivalent structure, called weak orthoalgebras was introduced by Giuntini and Greuling in [6]. We refer to [4] for more information on effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra $(E ; \oplus, 0,1)$ by E. In an effect algebra E, we write $a \leq b$ iff there is $c \in E$ such that $a \oplus c=b$. It is easy to check that every effect algebra is cancellative, thus \leq is a partial order on E. In this partial order, 0 is the least and 1 is the greatest element of E. Moreover, it is possible to introduce a new partial operation $\ominus ; b \ominus a$ is defined iff $a \leq b$ and then $a \oplus(b \ominus a)=b$. It can be proved that $a \oplus b$ is defined iff $a \leq b^{\prime}$ iff $b \leq a^{\prime}$. Therefore, it is usual to denote the domain of \oplus by \perp. If $a \perp b$, we say that a and b are orthogonal.

Let E_{1}, E_{2} be effect algebras. A mapping $\phi: E_{1} \mapsto E_{2}$ is called a homomorphism iff $\phi(1)=1$ and $a \perp b$ implies that $\phi(a) \perp \phi(b)$ and then $\phi(a \oplus b)=\phi(a) \oplus \phi(b)$. A homomorphism ϕ is an isomorphism iff ϕ is bijective and ϕ^{-1} is a homomorphism. Note that even if both E_{1} and E_{2} are lattice ordered, a homomorphism need not to preserve joins and meets.

An $M V$-algebra (c.f. [2], [12]) is a ($2,1,0$)-type algebra $(M ; \boxplus, \neg, 0)$, such that \boxplus satisfying the identities $(x \boxplus y) \boxplus z=x \boxplus(y \boxplus z), x \boxplus z=y \boxplus x, x \boxplus 0=x, \neg \neg x=x$, $x \boxplus \neg 0=\neg 0$ and

$$
x \boxplus \neg(x \boxplus \neg y)=y \boxplus \neg(y \boxplus \neg x) .
$$

[^0]An $M V$－effect algebra is a lattice ordered effect algebra M in which，for all $a, b \in M$ ， $(a \vee b) \ominus a=b \ominus(a \wedge b)$ ．It is proved in［3］that there is a natural，one－to one correspondence between MV－effect algebras and MV－algebras given by the following rules．Let $(M, \oplus, 0,1)$ be an MV－effect algebra．Let $⿴ 囗 十$ be a total operation given by $x \boxplus y=x \oplus\left(x^{\prime} \wedge y\right)$ ．Then $(M, \boxplus, 0,1)$ is an MV－algebra．Similarly，let $(M, \boxplus, 0,1)$ be an MV－algebra．Restrict the operation \boxplus to the pairs (x, y) satisfying $x \leq y^{\prime}$ and call the new partial operation \oplus ．Then $(M, \oplus, 0,1)$ is an MV－effect algebra．

Among lattice ordered effect algebras，MV－effect algebras can be characterized in a variety of ways．Three of them are given in the following proposition．

Proposition 1．［1］，［3］Let E be a lattice ordered effect algebra．The following are equivalent
（a）E is an $M V$－effect algebra．
（b）For all $a, b \in E, a \wedge b=0$ implies $a \perp b$ ．
（c）For all $a, b \in E, a \ominus(a \wedge b) \perp b$ ．
（d）For all $a, b \in E$ ，there exist $a_{1}, b_{1}, c \in E$ such that $a_{1} \oplus b_{1} \oplus c$ exists， $a_{1} \oplus c=a$ and $b_{1} \oplus c=b$ ．

Let D be a bounded distributive lattice．Up to isomorphism，there exists a unique Boolean algebra $B(D)$ such that D is a 0,1 －sublattice of $B(D)$ and B generates $B(D)$ as a Boolean algebra．This Boolean algebra is called R－generated Boolean algebra．We refer to［7］，section II．4，for an overview of results concerning R－ generated Boolean algebras．See also［9］and［11］．For every element x of $B(D)$ ， there exists a finite chain $x_{1} \leq \ldots \leq x_{n}$ in D such that $x=x_{1}+\ldots+x_{n}$ ．Here，+ denotes the symmetric difference，as in Boolean rings．We then say than $\left\{x_{i}\right\}_{i=1}^{n}$ is a D－chain representation of x ．It is easy to see that every element of $B(D)$ has a D－chain representation of even length．

Theorem 2．（Main result）．Let M be an $M V$－effect algebra．The mapping ϕ_{M} ： $B(M) \rightarrow M$ given by

$$
\phi_{M}(x)=\bigoplus_{i=1}^{n}\left(x_{2 i} \ominus x_{2 i-1}\right),
$$

where $\left\{x_{i}\right\}_{i=1}^{2 n}$ is a M－chain representation of x ，is a surjective homomorphism of effect algebras．

2．$B(M)$

Let L be a lattice．An element a of L is join－irreducible iff $a=b \vee c$ implies that $a=b$ or $a=c$ ；it is meet－irreducible iff $a=b \wedge c$ implies that $a=b$ or $a=c$ ．The set of all nonzero join－irreducible elements of a lattice L is denoted by $J(L)$ ，the set of all non－unit meet－irreducible elements of a lattice L is denoted by $M(L)$ ．

Let L be a finite distributive lattice．Then the mapping $r: L \rightarrow 2^{J(L)}$ given by $r(x)=\{a \in J(L): a \leq x\}$ is a 0 ，1－embedding of L into $2^{J(L)}$ ．It is easy to check that $a \in J(L)$ iff $\{x \in L: x \nsupseteq a\}$ is a prime ideal and then $m(a)=\bigvee\{x \in L$ ： $x \nsupseteq a\} \in M(L)$ ．By a dual argument，it is easy to see that $a \mapsto m(a)$ is a bijection from $J(L)$ onto $M(L)$ ．Moreover，for every maximal chain C of L the mapping π_{C} given by $\pi_{C}(a)=\bigwedge\{x \in C: x \geq a\}$ is a bijection from the set of all join－irreducible elements onto C（see［7］，Corollary II．1．14）．Note that π_{C} maps nonzero elements onto nonzero elements．

In what follows, \succ denotes the usual covering relation on a poset, that means, $\mathrm{i} a \succ b$ iff b is a maximal element of the set $\{x: x<a\}$.

Lemma 3. Let L be a finite distributive lattice, let C be a maximal chain in L, let $a \in J(L)$. Let $x \in C, \pi_{C}(a) \succ x$. Then $a \vee x=\pi_{C}(a)$ and $a \wedge x=a \wedge m(a)$.
Proof. We have $\pi_{C}(a) \wedge(a \vee x)=\left(\pi_{C}(a) \wedge a\right) \vee\left(\pi_{C}(a) \wedge x\right)=a \vee x$, so $\pi_{C}(a) \geq$ $a \vee x \geq x$. Since $\pi_{C}(a) \succ x$, we have either $\pi_{C}(a)=a \vee x$ or $a \vee x=x$. However, $a \vee x=x$ contradicts with $\pi_{C}(a) \neq x$, hence $\pi_{C}(a)=a \vee x$.

Since $x \nsupseteq a$, we have $x \leq m(a)$ and $a \wedge x \leq a \wedge m(a) \leq a$. Since $a \vee x=\pi_{C}(a) \succ x$, $a \succ a \wedge x$. Therefore, $a \wedge x=a \wedge m(a)$ or $a \wedge m(a)=a$. Since $a \not \leq m(a)$, $a \wedge x=a \wedge m(a)$.

Corollary 4. Let L be a finite sublattice of an MV-effect algebra M. Let C be a maximal chain of L, let $a \in J(L)$. Let $x \in C, \pi_{C}(a) \succ_{L} x$. Then $\pi_{C}(a) \ominus x=$ $a \ominus(a \wedge m(a))$.

Proof. Since M is a distributive lattice, L is distributive. By Lemma 3, we have $a \vee x=\pi_{C}(a)$ and $a \wedge x=a \wedge m(a)$. This implies that $\pi_{C}(a) \ominus x=(a \vee x) \ominus x=$ $a \ominus(a \wedge x)=a \ominus(a \wedge m(a))$.
Corollary 5. Let L be a finite sublattice of an MV-effect algebra M. Let C_{1}, C_{2} be maximal chains of L. There exists a bijection $b: C_{1} \rightarrow C_{2}$ such that, for all $x_{1}, x_{2} \in C_{1}$ with $x_{2} \succ_{L} x_{1}, x_{2} \ominus x_{1}=b\left(x_{2}\right) \ominus y$, where $y \in C_{2}$ and $b\left(x_{2}\right) \succ_{L} y$.
Proof. Since M is distributive, L is distributive. Let us put $b(x)=\pi_{C_{2}}\left(\pi_{C_{1}}^{-1}(x)\right)$. Obviously, b is a bijection. Write $a=\pi_{C_{1}}^{-1}\left(x_{2}\right)$. By Corollary 4, $\pi_{C_{1}}(a) \ominus x_{1}=$ $x_{2} \ominus x_{1}=a \ominus a \wedge m(a)$. Similarly, by Corollary $4, b\left(x_{2}\right) \ominus y=\pi_{C_{2}}(a) \ominus y=a \ominus a \wedge m(a)$. Thus, $x_{2} \ominus x_{1}=b\left(x_{2}\right) \ominus y$.
Lemma 6. Let L be a finite 0,1-sublattice of an $M V$-effect algebra M. Then the mapping $\psi_{L}: 2^{J(L)} \rightarrow M$ given by

$$
\psi_{L}(X)=\bigoplus_{a \in X} a \ominus(a \wedge m(a))
$$

is a homomorphism of effect algebras and, for all $x \in L, \psi_{L}(r(x))=x$.
Proof. By definition, $\psi_{L}(\emptyset)=0$. Let $x \in L$ and write $L_{x}=\{y \in L: y \leq x\}$. Note that $r(x)=J\left(L_{x}\right)$. Let $C=\left\{0=x_{0}, x_{1}, \ldots, x_{n}=x\right\}$ with $x_{i+1} \succ_{L} x_{i}$ be a maximal chain of L_{x}. Then the sum

$$
\bigoplus_{i=1}^{n} x_{i} \ominus x_{i-1}
$$

exists in M and equals x. By Corollary 4,

$$
x_{i} \ominus x_{i-1}=\pi_{C}^{-1}\left(x_{i}\right) \ominus\left(\pi_{C}^{-1}\left(x_{i}\right) \wedge m\left(\pi_{C}^{-1}\left(x_{i}\right)\right) .\right.
$$

Since π_{C} is a bijection, we have $r(x)=\left\{\pi_{C}^{-1}\left(x_{i}\right): i \in\{1, \ldots, n\}\right\}$, hence $\psi_{L}(r(x))$ exists and equals x. As a consequence, $\psi_{L}\left(2^{J(L)}\right)=\psi_{L}(r(1))=1$. The additivity of ψ_{L} is trivial.

Since, for every finite distributive lattice $L, r(L)$ R-generates $2^{J(L)}$, the injective mapping $r: L \rightarrow 2^{J(L)}$ uniquely extends to an isomorphism of Boolean algebras $\hat{r}: B(L) \rightarrow 2^{J(L)}$.

Lemma 7. Let L be a finite 0,1-sublattice of an $M V$-effect algebra M. Let ψ_{L}, \hat{r} be the mappings given above. Then $\psi_{L} \circ \hat{r}$ is a homomorphism of effect algebras satisfying

$$
\psi_{L} \circ \hat{r}\left(x_{1}+\ldots+x_{2 n}\right)=\bigoplus_{i=1}^{n}\left(x_{2 i} \ominus x_{2 i-1}\right)
$$

for every chain $x_{1} \leq \ldots \leq x_{2 n}$ of L.
Proof. Evidently, $\psi_{L} \circ \hat{r}: B(L) \rightarrow M$ is a homomorphism of effect algebras. Let $x_{1} \leq \ldots \leq x_{2 n}$ be a chain in L. Then

$$
\psi_{L}\left(\hat{r}\left(x_{1}+\ldots+x_{2 n}\right)\right)=\psi_{L}\left(\hat{r}\left(x_{1}\right)+\ldots+\hat{r}\left(x_{2 n}\right)\right)=\psi_{L}\left(r\left(x_{1}\right)+\ldots+r\left(x_{2 n}\right)\right)
$$

Since r is a lattice homomorphism, $r\left(x_{1}\right) \leq \ldots \leq r\left(x_{2 n}\right)$. Thus, in the Boolean algebra $2^{J(L)}$ we obtain

$$
r\left(x_{1}\right)+\ldots+r\left(x_{2 n}\right)=\bigoplus_{i=1}^{n}\left(r\left(x_{2 i}\right) \ominus r\left(x_{2 i-1}\right)\right)
$$

Finally, by Lemma 6,

$$
\begin{aligned}
\psi_{L}\left(r\left(x_{1}\right)+\ldots+r\left(x_{2 n}\right)\right)= & \bigoplus_{i=1}^{n} \psi_{L}\left(r\left(x_{2 i}\right)\right) \ominus \psi_{L}\left(r\left(x_{2 i-1}\right)\right)= \\
& \bigoplus_{i=1}^{n}\left(x_{2 i} \ominus x_{2 i-1}\right)=\phi_{L}\left(x_{1}+\ldots x_{2 n}\right)
\end{aligned}
$$

Proof of the main result. Let $x_{1} \leq \ldots \leq x_{2 n}, y_{1} \leq \ldots \leq y_{2 m}$ be two chains of M. Let L be the 0,1 -sublattice of M generated by $\left\{x_{1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{2 m}\right\}$. Then $B(L)$ is a Boolean subalgebra of $B(M),\left\{x_{1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{2 m}\right\} \subseteq B(L)$ and, by Lemma $7, \phi_{L}: B(L) \rightarrow M$ is a homomorphism of effect algebras.

Let us prove that ϕ_{M} is well defined. Suppose that $x_{1}+\ldots+x_{2 n}=y_{1}+\ldots+y_{2 m}$. By Lemma 7, $\bigoplus_{i=1}^{n}\left(x_{2 i} \ominus x_{2 i-1}\right)=\bigoplus_{i=1}^{n}\left(y_{2 i} \ominus y_{2 i-1}\right)$, hence ϕ_{M} is well defined on $B(L)$ and hence on the whole set M. Moreover, ϕ_{L} is just the restriction of ϕ_{M} to $B(L)$.

Suppose now that $x=x_{1}+\ldots+x_{2 n} \perp y_{1}+\ldots+y_{2 m}=y$. Again, by Lemma 7 , $\phi_{L}(x) \perp \phi_{L}(y)$ and $\phi_{L}(x \oplus y)=\phi_{L}(x) \oplus \phi_{L}(y)$. Obviously, $\phi_{M}(1)=1$.

For the proof of surjectivity, it suffices to observe that, for all $x \in M, \phi_{M}(x)=$ x.

Example 8. Let M be MV-effect algebra, which is totally ordered. By [7], Corollary II.4.19, $B(M)$ is isomorphic to the Boolean algebra of all subsets of M of the form $\left[a_{1}, b_{1}\right) \dot{\cup} \ldots \dot{\cup}\left[a_{n}, b_{n}\right)$. Here, we denote $[a, b)=\{x \in M: a \leq x<b\}$. The ϕ_{M} is then given by

$$
\phi_{M}\left(\left[a_{1}, b_{1}\right) \dot{\cup} \ldots \dot{\cup}\left[a_{n}, b_{n}\right)\right)=\left(b_{1} \ominus a_{1}\right) \oplus \ldots \oplus\left(b_{n} \ominus a_{n}\right) .
$$

Example 9. In this example, $[0,1]$ denotes the closed real unit interval. Let $C_{[0,1]}$ be the MV-effect algebra of all real continuous functions $f:[0,1] \rightarrow[0,1]$. Let B be the Boolean algebra

$$
\prod_{x \in[0,1]} B([0,1]),
$$

where $B([0,1])$ is the Boolean algebra of semiopen intervals described in Example 8. It is obvious that $C_{[0,1]}$, as a lattice, can be embedded into B by a mapping $\gamma: E \rightarrow B$ given by $\gamma(f)=([f(x), 0))_{x \in[0,1]}$. The image of E under γ then generates a Boolean subalgebra of B, which we can identify with $B\left(C_{[0,1]}\right)$. The $\phi_{C_{[0,1]}}: B\left(C_{[0,1]}\right) \rightarrow C_{[0,1]}$ mapping can then be constructed as follows.

Let $\left(A_{x}\right)_{x \in[0,1]} \in B\left(C_{[0,1]}\right)$. Fix $x \in[0,1]$ and write $A_{x}=\left[a_{1}, b_{1}\right) \dot{\cup} \ldots \dot{\cup}\left[a_{n}, b_{n}\right)$. The value of the continuous function $\phi_{C_{[0,1]}}\left(\left(A_{x}\right)_{x \in[0,1]}\right)$ at x is then equal to ($b_{1} \ominus$ $\left.a_{1}\right) \oplus \ldots \oplus\left(b_{n} \ominus a_{n}\right)$.

An element x of an effect algebra E is called central iff $x \wedge x^{\prime}=0$ and every element $a \in E$ admits a decomposition $a=a_{1} \oplus a_{2}$, where $a_{1} \leq x, a_{2} \leq x^{\prime}$. There is a natural correspondence between complementary pairs of central elements and direct decompositions of E. The set of all central elements of E is denoted by $C(E)$. Central elements of effect algebras were introduced in [8]. In an MV-algebra M, we have $x \in C(M)$ iff $x \wedge x^{\prime}=0$.

Theorem 10. Let M be an $M V$-effect algebra. Then $\phi_{M}^{-1}(x)=\{x\}$ iff $x \in C(M)$. Proof.
\Longrightarrow : Suppose $\phi_{M}^{-1}(x)=\{x\}$ and that $x \notin C(M)$. Then $x \wedge x^{\prime}>0$ and $x \vee x^{\prime}<1$. Let $L=\left\{0, x \wedge x^{\prime}, x, x^{\prime}, x \vee x^{\prime}, 1\right\}$. Then L is a 0,1 -sublattice of M and we have $J(L)=\left\{1, x, x^{\prime}, x \wedge x^{\prime}\right\}, M(L)=\left\{x \vee x^{\prime}, x^{\prime}, x, 0\right\}$. The m mapping for L is given by the following table.

a	1	x	x^{\prime}	$x \wedge x^{\prime}$
$m(a)$	$x \vee x^{\prime}$	x^{\prime}	x	0

We have $r(x)=\left\{x, x \wedge x^{\prime}\right\}$. Consider the set $Y=\{1, x\} \subseteq J(L)$. We have

$$
\begin{aligned}
\psi_{L}(Y)= & (1 \ominus 1 \wedge m(1)) \oplus(x \ominus x \wedge m(x))=\left(1 \ominus\left(x \vee x^{\prime}\right)\right) \oplus\left(x \ominus\left(x \wedge x^{\prime}\right)\right)= \\
& \left(x \wedge x^{\prime}\right) \oplus\left(x \ominus\left(x \wedge x^{\prime}\right)\right)=x
\end{aligned}
$$

Thus, $Y \in \psi_{L}^{-1}(x)$. Since $\phi_{M}^{-1}(x)=\phi_{L}^{-1}(x)=\{x\}, \psi_{L}^{-1}(x)=\{r(x)\}$. This implies that $Y=r(x)$ and $x \wedge x^{\prime}=1$, which is impossible.
\Longleftarrow : Suppose that $x \in C(M)$ and that there exists $y \in B(M)$ such that $x \neq y$ and $\phi_{M}(y)=x$. There exists a finite 0,1 -sublattice L of M such that $x, x^{\prime}, y \in B(L)$ and, since $2^{J(L)}$ and $B(L)$ are isomorphic, the set $Y=\hat{r}^{-1}(y) \subseteq J(L)$ satisfies $\psi_{L}(Y)=x$ and $Y \neq r(x)$.

Suppose that there exists $a \in Y, a \notin r(x)$. Since $x \in C(M)$, we have $x \wedge x^{\prime}=0$ and $x \vee x^{\prime}=1$; hence $r(x) \cap r\left(x^{\prime}\right)=\emptyset$ and $r(x) \cup r\left(x^{\prime}\right)=J(L)$. Therefore, $a \notin r(x)$ implies that $a \in r\left(x^{\prime}\right)$ and $a \leq x^{\prime}$, so $a \ominus(a \wedge m(a)) \leq x^{\prime}$. Since $a \in Y$, $a \ominus(a \wedge m(a)) \leq \psi_{L}(Y)=x$. This implies that $a \ominus(a \wedge m(a)) \leq x \wedge x^{\prime}=0$ and we obtain $a=a \wedge m(a)$. This is a contradiction.

Suppose that there exists $a \notin Y, a \in r(x)$. This implies that $a \notin r\left(x^{\prime}\right), a \in$ $J(L) \backslash Y$ and we have $\psi_{L}(J(L) \backslash Y)=x^{\prime}$. By above paragraph, this leads to a contradiction.

References

[1] M.K. Bennett and D.J. Foulis. Phi-symmetric effect algebras. Foundations of Physics, 25:1699-1722, 1995.
[2] C.C. Chang. Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc., 89:74-80, 1959.
[3] F. Chovanec and F. Kôpka. Boolean D-posets. Tatra Mt. Math. Publ, 10:1-15, 1997.
[4] A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures. Kluwer, Dordrecht and Ister Science, Bratislava, 2000.
[5] D.J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Phys., 24:1331-1352, 1994.
[6] R. Giuntini and H. Greuling. Toward a formal language for unsharp properties. Found. Phys., 19:769-780, 1994.
[7] George Grätzer. General Lattice Theory. Birkhäuser, second edition, 1998.
[8] R. Greechie, D. Foulis, and S. Pulmannová. The center of an effect algebra. Order, 12:91-106, 1995.
[9] J. Hashimoto. Ideal theory for lattices. Math. Japon., 2:149-186, 1952.
[10] F. Kôpka and F. Chovanec. D-posets. Math. Slovaca, 44:21-34, 1994.
[11] H.M. MacNeille. Extension of a distributive lattice to a Boolean ring. Bull. Amer. Math. Soc., 45:452-455, 1939.
[12] D. Mundici. Interpretation of $\mathrm{AF} C^{*}$-algebras in Lukasziewicz sentential calculus. J. Functional Analysis, 65:15-63, 1986.

Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 81219 Bratislava, Slovakia

E-mail address: jenca@kmat.elf.stuba.sk

[^0]: 1991 Mathematics Subject Classification. Primary 06C15; Secondary 03G12,81P10.
 Key words and phrases. MV-algebra, effect algebra, R-generated Boolean algebra.
 This research is supported by grant G-1/7625/20 of MŠ SR, Slovakia.

