BOOLEAN ALGEBRAS R-GENERATED BY MV-EFFECT
ALGEBRAS

GEJZA JENCA

ABSTRACT. We prove that every MV-effect algebra M is, as an effect algebra,
a homomorphic image of its R-generated Boolean algebra. We characterize
central elements of M in terms of the constructed homomorphism.

1. DEFINITIONS AND BASIC RELATIONSHIPS

An effect algebra is a partial algebra (E;®,0,1) with a binary partial operation
@ and two nullary operations 0, 1 satisfying the following conditions.

(E1) If a @b is defined, then b @ a is defined and a ® b =b @ a.

(E2) If a® b and (a ® b) ® c are defined, then b ® ¢ and a ® (b ® ¢) are defined
and (a®b)Bc=a® (bDc).

(E3) For every a € E there is a unique a’ € E such that a @ a’ = 1.

(E4) If a ® 1 exists, then a =0

Effect algebras were introduced by Foulis and Bennett in their paper [5]. In-
dependently, Kopka and Chovanec introduced an essentially equivalent structure
called D-poset (see [10]). Another equivalent structure, called weak orthoalgebras
was introduced by Giuntini and Greuling in [6]. We refer to [4] for more information
on effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra (F;@®,0,1) by E. In an effect algebra E,
we write a < b iff there is ¢ € E such that a & ¢ = b. It is easy to check that every
effect algebra is cancellative, thus < is a partial order on E. In this partial order, 0
is the least and 1 is the greatest element of E. Moreover, it is possible to introduce
a new partial operation ©; b© a is defined iff a« < b and then a® (b©a) = b. It can
be proved that a @ b is defined iff a < b’ iff b < a’. Therefore, it is usual to denote
the domain of @& by L. If a L b, we say that a and b are orthogonal.

Let Eq, Es be effect algebras. A mapping ¢ : Fy — Fs is called a homomorphism
iff (1) =1 and a L b implies that ¢(a) L #(b) and then ¢(a & b) = ¢(a) ® ¢(b). A
homomorphism ¢ is an isomorphism iff ¢ is bijective and ¢! is a homomorphism.
Note that even if both F; and Es are lattice ordered, a homomorphism need not
to preserve joins and meets.

An MV-algebra (c.f. [2], [12]) is a (2, 1,0)-type algebra (M;H, —,0), such that B
satisfying the identities (xBy)HBz = «H (yBz2), cBz = yBz, B0 =z, -z =z,
B -0 = -0 and

zBH-(xB-y) =y B -(y B -x).
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An MV-effect algebra is a lattice ordered effect algebra M in which, for all a,b € M,
(avb)oa=>bo (aAnb). It is proved in [3] that there is a natural, one-to one
correspondence between MV-effect algebras and MV-algebras given by the following
rules. Let (M, ®,0,1) be an MV-effect algebra. Let B be a total operation given by
xBy=x® (¢’ Ay). Then (M,H,0,1) is an MV-algebra. Similarly, let (M,H,0,1)
be an MV-algebra. Restrict the operation B to the pairs (x,y) satisfying = < ¢’
and call the new partial operation @. Then (M, ®,0, 1) is an MV-effect algebra.

Among lattice ordered effect algebras, MV-effect algebras can be characterized
in a variety of ways. Three of them are given in the following proposition.

Proposition 1. [1], [3] Let E be a lattice ordered effect algebra. The following are
equivalent

(a) E is an MV-effect algebra.

(b) For all a,b€ E, aNb=0 implies a L b.

(¢) Foralla,be E, a© (aNb) Lb.

(d) For all a,b € E, there exist a1,b1,c € E such that a1 ® by ® c ewists,
ar®c=a and by Dc=0b.

Let D be a bounded distributive lattice. Up to isomorphism, there exists a unique
Boolean algebra B(D) such that D is a 0, 1-sublattice of B(D) and B generates
B(D) as a Boolean algebra. This Boolean algebra is called R-generated Boolean
algebra. We refer to [7], section II.4, for an overview of results concerning R-
generated Boolean algebras. See also [9] and [11]. For every element x of B(D),
there exists a finite chain z; < ... < x, in D such that z = z; + ...+ z,,. Here, +
denotes the symmetric difference, as in Boolean rings. We then say than {z;}7_; is
a D-chain representation of x. It is easy to see that every element of B(D) has a
D-chain representation of even length.

Theorem 2. (Main result). Let M be an MV-effect algebra. The mapping ¢ :
B(M) — M given by
n
o (z) = @(1‘21 © w2i-1),
i=1
where {x;}2", is a M-chain representation of x, is a surjective homomorphism of

effect algebras.

2. B(M)

Let L be a lattice. An element a of L is join-irreducible iff a = bV ¢ implies that
a = b or a = c; it is meet-irreducible iff a = b A ¢ implies that a = b or a = ¢. The
set of all nonzero join-irreducible elements of a lattice L is denoted by J(L), the
set of all non-unit meet-irreducible elements of a lattice L is denoted by M (L).

Let L be a finite distributive lattice. Then the mapping r : L — 27() given by
r(z) = {a € J(L) : a < z} is a 0, 1-embedding of L into 27(5) Tt is easy to check
that a € J(L) iff {x € L : © # a} is a prime ideal and then m(a) = \/{z € L :
x #a} € M(L). By a dual argument, it is easy to see that a — m(a) is a bijection
from J(L) onto M(L). Moreover, for every maximal chain C of L the mapping m¢
given by mc(a) = A{x € C : > a} is a bijection from the set of all join-irreducible
elements onto C' (see [7], Corollary II1.1.14). Note that 7o maps nonzero elements
onto nonzero elements.
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In what follows, > denotes the usual covering relation on a poset, that means,
ia > b iff b is a maximal element of the set {z : = < a}.

Lemma 3. Let L be a finite distributive lattice, let C' be a maximal chain in L, let
a€J(L). Letx € C, ng(a) = x. ThenaVax =nc(a) and a Az =a Am(a).

Proof. We have mg(a) A (aV z) = (r¢(a) Aa) V (re(a) ANx) = aV x, so nc(a) >
aV x> x. Since m¢(a) = x, we have either 7c(a) = aV z or aVz = x. However,
aV x = x contradicts with 7o (a) # x, hence m¢(a) = a V x.

Since z # a, we have x < m(a) and aAz < aAm(a) < a. Since aVz = m¢(a) > x,
a = a Ax. Therefore, a Az = a Am(a) or a Am(a) = a. Since a £ m(a),
aNz=aAm(a). O

Corollary 4. Let L be a finite sublattice of an MV-effect algebra M. Let C be a
mazimal chain of L, let a € J(L). Let x € C, wc(a) = . Then ne(a) ©x =
a o (a Am(a)).

Proof. Since M is a distributive lattice, L is distributive. By Lemma 3, we have
aVz =m7c(a) and a Az = a Am(a). This implies that 7¢(a) ©x = (aVz)Sx =
a5 (aNz)=0a6 (aANm(a)). O
Corollary 5. Let L be a finite sublattice of an MV-effect algebra M. Let C1,Cy

be maximal chains of L. There exists a bijection b : C1 — Cy such that, for all
x1,x9 € Cy with o =1, 1, T2 © 21 = b(x2) Oy, where y € Cy and b(xs) -1 y.

Proof. Since M is distributive, L is distributive. Let us put b(x) = ¢, (wall(x))
Obviously, b is a bijection. Write a = 7r511 (z2). By Corollary 4, ¢, (a) © x1 =
226021 = a©aAm(a). Similarly, by Corollary 4, b(z2)Sy = 7, (a)Oy = a©arm(a).
Thus, 2 © 21 = b(x2) O y. O

Lemma 6. Let L be a finite 0, 1-sublattice of an MV-effect algebra M. Then the
mapping Y, : 27 — M given by

UL(X) =P as (arm(a)
a€eX
is a homomorphism of effect algebras and, for all x € L, 9 (r(x)) = x.

Proof. By definition, ¥ () = 0. Let 2 € L and write L, = {y € L : y < z}.
Note that r(x) = J(L;). Let C = {0 = xo,21,...,2, = 2} with ;41 > 2; be a
maximal chain of L,. Then the sum

n
@ i O Ti—1
i=1
exists in M and equals z. By Corollary 4,

2 © @iy = 15 (@) © (ng (@) Am(ng (@:)):

Since 7 is a bijection, we have r(z) = {n5'(2;) : i € {1,...,n}}, hence ¥ (r(z))
exists and equals . As a consequence, 17, (27(F)) = ¢ (r(1)) = 1. The additivity
of vy, is trivial. ([l

Since, for every finite distributive lattice L, 7(L) R-generates 27", the injective

mapping r : L — 27(F) uniquely extends to an isomorphism of Boolean algebras
#: B(L) — 270,
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Lemma 7. Let L be a finite 0, 1-sublattice of an MV-effect algebra M. Let iy, 7
be the mappings given above. Then 1y o7 is a homomorphism of effect algebras
satisfying

n
Ypof(ry 4 ... +a2,) = @(3?21 O T9i—1)
i=1
for every chain x1 < ... < xzo, of L.

Proof. Evidently, ¢, o7 : B(L) — M is a homomorphism of effect algebras. Let
z1 <...< Zo, be achain in L. Then

Y (F(xr 4+ ...+ o)) =YL (F(xr) + ...+ F(x2,)) = Vr(r(zr) + ... + r(x2n)).

Since r is a lattice homomorphism, r(z1) < ... < r(z2,). Thus, in the Boolean
algebra 27() we obtain

r(z1) + ... +7r(ze,) = @(r(xzz) & r(r2i-1)).

Finally, by Lemma 6,

Yr(r(zy) + ...+ r(z2n)) :@W(T(Izi)) O Yp(r(w2i-1)) =
P (@2i © w2i1) = dr(z1 + ... 220).

O

Proof of the main result. Let z1 < ... < oy, 11 < ... < Yo, be two chains of M.
Let L be the 0, 1-sublattice of M generated by {z1,...,2Z2n,41,...,%2m}. Then
B(L) is a Boolean subalgebra of B(M), {z1,...,Zan,y1,---,Y2m} C B(L) and, by
Lemma 7, ¢y, : B(L) — M is a homomorphism of effect algebras.

Let us prove that ¢y is well defined. Suppose that z1+...+22, = y1+. ..+ Yom-
By Lemma 7, @, (22 © x2i—1) = @, (y2: © y2i—1), hence ¢y is well defined on
B(L) and hence on the whole set M. Moreover, ¢y, is just the restriction of ¢as to
B(L).

Suppose now that t =x1+ ...+ zo, L y1+...+y2m = y. Again, by Lemma 7,
or(z) L ¢r(y) and ¢r(z ®y) = ¢r(z) ® dr(y). Obviously, gar(1) = 1.

For the proof of surjectivity, it suffices to observe that, for all © € M, ¢p(x) =
T. (I

Example 8. Let M be MV-effect algebra, which is totally ordered. By [7], Corol-
lary 11.4.19, B(M) is isomorphic to the Boolean algebra of all subsets of M of the
form [a1,b1)U...Ulan, b,). Here, we denote [a,b) = {x € M : a < 2z < b}. The ¢y
is then given by

d1([az, b)U ... Ulan, bp)) = (b1 © a1) @ ... & (b © an).

Example 9. In this example, [0, 1] denotes the closed real unit interval. Let Cpo 1
be the MV-effect algebra of all real continuous functions f : [0,1] — [0,1]. Let B
be the Boolean algebra

[T B(o.1),

z€[0,1]
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where B([0,1]) is the Boolean algebra of semiopen intervals described in Example
8. It is obvious that Cjg 1), as a lattice, can be embedded into B by a mapping
v : B — B given by v(f) = ([f(2),0))ze[0,1. The image of E under v then
generates a Boolean subalgebra of B, which we can identify with B(Clo ). The
PCpon B(Cjo,1)) — Cio,1) mapping can then be constructed as follows.

Let (Aac)a;e[O,l] S B(C[O,l])~ Fix z € [O, 1] and write A, = [a1,b1)U ce. U[an,bn)
The value of the continuous function ¢¢y, ,,((Az)ze(0,1]) at @ is then equal to (b1 ©
1) D ... 0 (bn ©ay).

An element z of an effect algebra E is called central iff x A 2’ = 0 and every
element a € F admits a decomposition a = a; @ as, where a1 < x, as < x’. There
is a natural correspondence between complementary pairs of central elements and
direct decompositions of E. The set of all central elements of E is denoted by C(E).
Central elements of effect algebras were introduced in [8]. In an MV-algebra M,
we have z € C(M) iff x A2’ = 0.

Theorem 10. Let M be an MV-effect algebra. Then ¢y (z) = {z} iff v € C(M).
Proof.

= Suppose ¢} (z) = {x} and that z ¢ C(M). Then Az’ >0 and zVa' < 1.
Let L = {0,z Az’ z,2', 2V 2',1}. Then L is a 0, 1-sublattice of M and we have
J(L) ={l,z,2",z na'}, M(L) = {z V2',2’,2,0}. The m mapping for L is given
by the following table.

a 1 z |2 |xzND

m(a) |zVa |2 | x 0

We have r(z) = {z,z A z'}. Consider the set Y = {1,2} C J(L). We have
Y YV)=161Am) @ (zorAmx)=>1c@Vvr)e(xe(zAr)) =
(zA2)® (z O (xAD)) =ua.

Thus, Y € ¢ ' (z). Since ¢, (z) = ¢, (z) = {2}, ¥; ' (z) = {r(z)}. This implies
that Y = r(z) and = A 2’ = 1, which is impossible.

<—: Suppose that z € C(M) and that there exists y € B(M) such that x # y
and ¢y (y) = x. There exists a finite 0, 1-sublattice L of M such that z,z’,y € B(L)
and, since 27(") and B(L) are isomorphic, the set Y = #71(y) C J(L) satisfies
YY) =z and Y # r(z).

Suppose that there exists a € Y, a & r(z). Since z € C(M), we have z Az’ =0
and z V2’ = 1; hence r(z) Nr(z’) = 0 and r(z) Ur(z’) = J(L). Therefore,
a & r(z) implies that a € r(2') and a < 2/, 50 a © (a Am(a)) < 2’. Since a €Y,
a© (aAm(a)) <¢p(Y) = x. This implies that a © (a Am(a)) <z Az’ =0 and we
obtain @ = a A m(a). This is a contradiction.

Suppose that there exists a ¢ Y, a € r(x). This implies that a & r(2'), a €
J(L)\'Y and we have ¢ (J(L)\Y) = 2/. By above paragraph, this leads to a
contradiction. ]
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