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Abstract

We deal with the system of quasistationary von Kármán equations
describing moderately large deflections of thin viscoelastic plates. We
shall concentrate on a long memory material, which gives rise to a
quasistationary system with a linear integro-differential main part and
a nonlinear integro-differential term. The existence and the uniqueness
of a solution as the limit of a semidiscrete approximation is verified.
Its behaviour for large values of a time variable is studied.
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1 Introduction

We continue the investigation of the behaviour of a viscoelastic isotropic
plate involving the geometrical nonlinearity. The behaviour of a solution
corresponds to moderately large deflections due to the theory of Fox, Raoult
and Simo [3]. We assume the bounded middle surface Ω of the plate with
a Lipschitz continuous boundary Γ. We have formulated in the first part of
the paper [1] the integro-differential von Kármán system for the deflection
w(t, x) and the Airy stress function Φ(t, x), t ≥ 0, x ∈ Ω :

D(0)∆2w + D′ ∗∆2w − [Φ, w] = f(t),

∆2Φ = −h

2
(E(0)[w,w] + E′ ∗ [w,w]),
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where E ∈ C1(R+) is a positive decreasing relaxation function, t → D(t) =
h3

12(1−µ2)
E(t) is the material function, h > 0 the thickness of a plate, µ ∈

(0, 1/2) the Poisson ratio, (f ∗ g)(t) =
∫ t
0 f(t − s)g(s)ds the convolution

product and

[v, w] = ∂11v∂22w + ∂22v∂11w − 2∂12v∂12w, v, w ∈ H2(Ω).

In the special case of the relaxation function

E(t) = E0 + E1e
−βt, t ≥ 0, E0 > 0, E1 > 0, β > 0

the original integro-differential system is in [1] transformed into the nonlin-
ear pseudoparabolic system. We considered the clamped plate with Dirich-
let boundary conditions for both the deflection and the Airy stress function.
The initial-boundary value for the original system was expressed as the non-
linear initial value problem for the pseudoparabolic equation in the Sobolev
space H2

0 (Ω). We have substituted this problem by a finite sequence of
stationary von Kármán-like equations for every time step. The correspond-
ing sequence of segment line functions was convergent to a nonstationary
deflection function.

We shall deal here with the general long memory isotropic case, consid-
ering mixed boundary conditions for the deflection and the nonhomogeneous
conditions for the Airy stress function formulated in a similar way as in [6]
or [11] for the elastic plate.

The existence of a weak solution of the resulting nonlinear integro-
differential system will be verified as the limit of the sequences of segment
line and step in time functions after substituting the convolution integrals
by finite sums.

The main condition for the convergence is the estimate of the right-hand
side, which do not depend on the lenght of the time interval.

We consider the memory term also in the equation for the Airy stress
function. The dynamic viscoelastic von Kármán systems are studied nowa-
days mainly in the framework of controllability problems. The authors (Horn
and Lasiecka [7], Lagnese [9], Muñoz Rivera and Perla Menzala [10]) have
considered the memory term only in the linear part of the system.

The last chapter of the article is devoted to the study of the behaviour
of a solution for large values of time variable. We shall verify that only the
estimate of the limit value of the right-hand side implies the limit behaviour
of the solution to the corresponding solution of the stationary von Kármán
system.
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2 Formulation of the problem

We assume that a plate is subjected both to a perpendicular load of a plane
density f and the forces acting along the boundary Γ = Γ1 ∪Γ2 ∪Γ3, where
each Γi is either empty or mes(Γi) > 0. Further we assume that Γ1 6= ∅ or
Γ2 6= ∅ and Γ2 is not a segment of a straight line. The part Γ3 contains only
smooth parts.

We shall consider the following boundary value problem:

D(0)∆2w + D′ ∗∆2w − [Φ, w] = f(t), (1)

w =
∂w

∂ν
= 0 on Γ1, (2)

w = 0, M(w) + k2
∂w

∂ν
= m2 on Γ2, (3)

M(w) + k31
∂w

∂ν
= m3, S(w) + k32w = t3 on Γ3, (4)

∆2Φ− h

2
(E(0)[w,w] + E′ ∗ [w,w]), (5)

Φ = φ0,
∂Φ
∂ν

= φ1 on Γ, (6)

where

M(w) = D(0)M(w) + D′ ∗M(w),
M(w) = µ∆w + (1− µ)(w,11ν

2
1 + 2w,12ν1ν2 + w,22ν

2
2),

S(w) = w,1Φ,2σ − w,2Φ,1σ + D(0)S(w) + D′ ∗ S(w),

S(w) = − ∂

∂ν
∆w + (1− µ)

∂

∂σ
[w,11ν1ν2 − w,12(ν2

1 − ν2
2)− w,22ν1ν2].

We set

w,i =
∂w

∂xi
, w,ij =

∂2w

∂xi∂xj
, Φ,iσ =

∂

∂σ

∂Φ
∂xi

.

ν = (ν1, ν2), σ = (−ν2, ν1) are the unit outward normal and the unit
tangential vector with respect to Γ respectively.

The functions k2 ≥ 0, k3i ≥ 0, i = 1, 2 satisfy the conditions

k2 ∈ Lp(Γ2), k31 ∈ Lp(Γ3), p > 1, k32 ∈ L1(Γ3).

They express the elastic contact of the boundary in the case of their posi-
tiveness.
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Let us introduce following Hilbert spaces corresponding to the boundary
conditions (2)-(4) and (6). We set

H2
0 (Ω) = {v ∈ H2(Ω)| v =

∂v

∂ν
= 0 on Γ}.

H2
0 (Ω) is the Hilbert space with the inner product ((., .))0 and the norm ‖.‖0

defined by

((u, v))0 =
∫
Ω

∆u∆vdx, ‖u‖0 = ((u, u))1/2
0 , u, v ∈ H2

0 (Ω).

Further we introduce the Hilbert space

V = {v ∈ H2(Ω)| v =
∂v

∂ν
= 0 on Γ1, v = 0 on Γ2}

with the inner product ((., .)) and the norm ‖.‖ defined by

((u, v)) =∫
Ω
[u,11v,11 + 2(1− µ)u,12v,12 + u,22v,22 + µ(u,11v,22 + u,22v,11]dx

+
∫
Γ2

k2
∂u

∂ν

∂v

∂ν
dσ +

∫
Γ3

(k31
∂u

∂ν

∂v

∂ν
+ k32uv)dσ, (7)

‖u‖ = ((u, u))1/2, u, v ∈ V. (8)

The norm defined in (8) is in the space V equivalent with the original norm

‖u‖H2(Ω) = [
∫
Ω
(u2 + u2

,11 + 2u2
,12 + u2

,22)dx]1/2

of the Sobolev space H2(Ω) (see [11], Lemma 11.3.2 for the details).
We denote by V ∗ the space of all linear bounded functionals over V with

the norm ‖f‖∗ and the duality pairing 〈f, v〉 for f ∈ V ∗ and v ∈ V .
Finally we impose the conditions upon the right-hand sides in the Prob-

lem (1)-(6). We assume

f ∈ W 1,2(0, T ;V ∗), (9)
mi ∈ W 1,2(0, T ;Lp(Γi)), i = 2, 3 (10)
t3 ∈ W 1,2(0, T ;Lp(Γ3)), T > 0. (11)

For any Banach space X we denote by W 1,2(0, T ;X) the space of functions
f ∈ L2(0, T ;X) such that f ′ ∈ L2(0, T ;X), where f ′ is the derivative in the
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sense of distributions D′(0, T ;X) of the function f . It can be verified in the
same way as for real functions that W 1,2(0, T ;X) is a Banach space with a
norm ‖f‖W 1,2 = ‖f‖L2(0,T ;X) + ‖f ′‖L2(0,T ;X). (See [2] for further properties
of the space W 1,2(0, T ;X) ).

We denote by C(0, T ;X) the Banach space of continuous functions de-
fined on the interval [0, T ] with values in X.

We suppose the functions φi : [0, T ]× Γ → R, i = 0, 1 to be sufficiently
smooth in order to enable the existence of a function

F ∈ W 1,2(0, T ;H2(Ω))

such that

F = φ0,
∂F

∂ν
= φ1 on Γ, (12)

((F (t), φ))0 = 0 for all φ ∈ H2
0 (Ω). (13)

The paper [6] contains the detailed assumptions imposed upon φ0, φ1 in
order to fulfil (12), (13). For every t ∈ [0, T ] is F (t) ∈ H2(Ω) a weak solution
of the biharmonic equation ∆2F (t) = 0 with the boundary conditions (12).

Let us introduce the trilinear form

B(u, v;w) =
∫
Ω
[(u,12v,2 − u,22v,1)w,1 + (u,12v,1 − u,11v,2)w,2]dx,

u, v, w ∈ H2(Ω). (14)

The existence of the integral in (14) is assured due to the imbedding H2(Ω) ⊂
W 1,4(Ω). The form B fulfils the inequality

|B(u, v;w)| ≤
√

2|u|H2(Ω)|v|W 1,4(Ω)|w|W 1,4(Ω), u, v, w ∈ H2(Ω) (15)

with seminorms

|u|H2(Ω) = [
∫
Ω
(u2

,11 + 2u2
,12 + u2

,22)dx]1/2,

|v|W 1,4(Ω) = [
∫
Ω
(v4

,1 + v4
,2)dx]1/4.

After multiplying the equations (1) and (5) with test functions v ∈ V
and φ ∈ H2

0 (Ω) respectively and applying the boundary conditions we arrive
to a formulation of a weak solution of the problem (1)-(6) in a similar way
as in [6] for the elastic case.
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Definition 2.1 A pair {w,Φ} is a weak solution of the boundary value prob-
lem (1)-(6) if

1. w ∈ C([0, T ], V ),
2. Φ ∈ C([0, T ],H2(Ω)), Φ = φ0,

∂Φ
∂ν = φ1 on Γ,

3. There hold the identities

((D(0)w(t) + D′ ∗ w(t), v))− B(Φ(t), w(t); v) =∫
Γ2

m2(t)
∂v

∂ν
dσ +

∫
Γ3

(m3(t)
∂v

∂ν
+ t3(t)v)dσ + 〈f(t), v〉, (16)

for all v ∈ V,

((Φ(t), φ))0 = −h

2

∫
Ω
(E(0)[w,w] + E′ ∗ [w,w])(t)φdx (17)

for all v ∈ H2
0 (Ω).

After expressing the Airy stress function Φ in the form Φ = F +Ψ, where
a function F is defined in (12), (13) we can directly derive the following

Theorem 2.2 A pair {w,Φ} is a weak solution of the boundary value prob-
lem (1)-(6) if and only if Φ = Ψ + F and a pair {w,Ψ} ∈ C([0, T ], V ) ×
C([0, T ],H2

0 (Ω)) satisfies the identities

((D(0)w(t) + (D′ ∗ w)(t), v))− B(Ψ(t) + F (t), w(t); v) =∫
Γ2

m2(t)
∂v

∂ν
dσ +

∫
Γ3

(m3(t)
∂v

∂ν
+ t3(t)v)dσ + 〈f(t), v〉, (18)

for all v ∈ V,

((Ψ(t), φ))0 = −h

2

∫
Ω
(E(0)[w,w](t) + (E′ ∗ [w,w])(t))φdx (19)

for all φ ∈ H2
0 (Ω).

Before transforming the system (18), (19) into one canonical Volterra
type nonlinear integral equation in the Hilbert space V we derive some
properties of the trilinear form B. We shall use a well known formula ([5])∫

Ω
[u, v]φdx =

∫
Ω

u[v, φ]dx for all u, v ∈ V, φ ∈ H2
0 (Ω).

Applying the integration by parts and the density of the sets C∞
0 (Ω) and

C∞(Ω) in H2
0 (Ω) and H2(Ω) respectively we arrive at the formula

B(u,w; v) = B(v, w;u) = B(w, v;u) for all u, w ∈ H2(Ω), v ∈ H2
0 (Ω).

(20)
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The following symmetry property

B(u, v;w) = B(u, w; v) for all u, v, w ∈ H2(Ω) (21)

can be seen directly. Using the inequality (15) we obtain the inequalities

|B(F, u; v)| ≤ c1‖F‖H2(Ω)‖u‖W 1,4(Ω)‖v‖ (22)

for all F ∈ H2(Ω), u, v ∈ V,

|B(φ, u; v)| ≤ c2‖φ‖0‖u‖W 1,4(Ω)‖v‖ (23)

for all φ ∈ H2
0 (Ω), u, v ∈ V,

We introduce the bilinear operators B : H2(Ω) × H2(Ω) → V and B0 :
V × V → H2

0 (Ω) as solutions of equations

((B(u, w), v)) = B(u, w; v) for all v ∈ V, (24)

((B0(u, w), φ))0 =
∫
Ω
[u, w]φdx for all φ ∈ H2

0 (Ω). (25)

Both equations are solved uniquelly, because the right-hand sides of both
relations belong to the dual spaces V ∗ and (H2

0 (Ω))∗ respectively.
The operators B : H2(Ω) × H2(Ω) → V, B0 : V × V → H2

0 (Ω) are
bounded (as bilinear operators) and satisfy the relations∫

Ω
[u, v]φdx = ((B(u, v), φ)) = ((B(v, u), φ)) = ((B(u, φ), v)) (26)

for all u, v ∈ V, φ ∈ H2
0 (Ω),

B0(u, v) = B0(v, u) for all u, v ∈ V, (27)
((B(B0(u, v), w), φ)) = (( B0(u, v), B0(w, φ) ))0 (28)
for all u, v, w, φ ∈ V,

‖B(u, v)‖ ≤ c3‖u‖ ‖w‖W 1,4(Ω), (29)
‖B(u, v)‖ ≤ ‖B‖ ‖u‖ ‖v‖ (30)
for all u, v ∈ H2(Ω),
‖B0(u, v)‖0 ≤ c4‖u‖W 1,4(Ω)‖w‖W 1,4(Ω) (31)
‖B0(u, v)‖0 ≤ ‖B0‖ ‖u‖ ‖v‖, (32)
for all u, v ∈ V.

Applying the operator B0 we express the function Ψ from the identity (19)
in the form

Ψ(t) = −h

2
[E(0)B0(w,w)(t) + E′ ∗B0(w,w)(t)], t ∈ [0, T ]. (33)

7



Let us define the function q : [0, T ] → V by the relation

((q(t), v)) =
1

D(0)
[
∫
Γ2

m2(t)
∂v

∂ν
dσ +

∫
Γ3

(m3(t)
∂v

∂ν
+ t3(t)v)dσ + 〈f(t), v〉] (34)

for all v ∈ V.

The elements q(t) ∈ V are uniquelly defined as the Riesz representants of
the right-hand side in the relation (34) which is for every t ∈ [0, T ] the
linear continuous functional over V . Moreover we have the regularity

q ∈ W 1,2(0, T ;V ) (35)

due to the assumptions (9)-(11).
After inserting the values Ψ(t) from (33) into (18) and using the relations

(24), (34) we arrive at

The canonical Volterra integral equation

w(t) + g ∗ w − aB(F (t), w(t)) +
αB( B0(w,w)(t) + g ∗B0(w,w)(t), w(t) ) = q(t) ∈ V, (36)

g(t) =
D′(t)
D(0)

=
E′(t)
E(0)

, a =
1

D(0)
, α =

h

2
E(0)
D(0)

.

It can be readily seen that a function w is a solution of the canonical
equation (36) if and only if a pair {w,B0(w,w)} : [0, T ] → V ×H2

0 (Ω) is a
solution of the identities (18), (19) and hence a pair {w,F + B0(w,w)} is a
weak solution of the original problem (1)-(6).

3 Existence and Uniqueness of a Solution

We shall verify the existence of a solution of the canonical integro-differential
equation (36) using its discretization with respect to the time variable t.

Before formulating the discrete scheme let us set some additional growth
assumptions on the kernel function g and the bounds on the function F . We
assume the exponential behaviour of the continuous kernel function g:

0 < −g(t) ≤ Ke−βt, t ≥ 0, 0 < K < β. (37)

corresponding to the most of viscoelastic materials (see [4] for example).
Further we assume that

((B(F (t), v), v)) ≤ 0 ∀ t ∈ [0, T ], v ∈ V. (38)
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Comparing with (14), (24) we can see that the condition∫
Ω
[F,22(t)(v,1)2−2F,12(t)v,1v,2+F,11(t)(v,2)2]dx ≥ 0 ∀ t ∈ [0, T ], v ∈ V (39)

is sufficient for fulfilling (38).
For a fixed integer N we set

τ = T
N , ti = iτ, wi = w(ti), i = 0, 1, ..., N ;
δwj = 1

τ (wj − wj−1), j = 1, ..., N.

We convert nonlinear Volterra integral equation (36) into a finite se-
quence of nonlinear stationary equations in the Hilbert space V which are
similar to the canonical von Kármán equations for the elastic plate. We shall
use the Rothe’s method in a similar way as by Kačur [8] or Slodička [12]
in the case of parabolic integro-differential equations. Applying the discrete
values wi instead of w(ti), i = 0, 1, ..., N and the substituting integrals in
(36) by finite sums we arrive at the equations

w0 − aB(F0, w0) + αB(B0(w0, w0), w0) = q0, (40)

wi − aB(Fi, wi) + τ
i−1∑
j=0

gi−jwj +

αB

B0(wi, wi) + τ
i−1∑
j=0

gi−jB0(wj , wi)

 = qi, (41)

i = 1, ..., N.

The equations (40), (41) are the Euler equations for the functionals

J0(v) =
1
2
[‖v‖2 − a((B(F0, v), v))] +

a

4
‖B0(v, v)‖2

0

Ji(v) =
1
2
[‖v‖2 − a((B(Fi, v), v))] +

a

4
‖B0(v, v)‖2

0 +τ
i−1∑
j=0

gi−jwj , v

+
α

2

τ
i−1∑
j=0

gi−jB0(wj , wj), B0(v, v)


0

−((qi, v)), v ∈ V, i = 1, ..., n.

The functionals Ji, i = 0, 1, ..., N are weakly lower semicontinuous and
coercive over V . The coerciveness

lim
‖v‖→+∞

Ji(v) = +∞ (42)
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can be seen directly. The weakly lower semicontinuity is the consequence of
the inequality (31) and the compact imbedding V ⊂ W 1,4(Ω) which imply

vn ⇀ v in V =⇒ B0(vn, vn) → B0(v, v) in H2
0 (Ω). (43)

Then there exist elements wi ∈ V fulfilling the minimum condition

Ji(wi) = min
v∈V

Ji(v), i = 0, 1, ..., N

and solving the discrete canonical equations (40), (41).
We proceed with a priori estimates. In order to achieve the best possible

uniform estimates we multiply the discrete canonical equations (41) with
the exponential functions with positive exponents. Let a constant γ ∈ R
fulfil the condition

0 < γ < β −K. (44)

We start with estimates of the finite sums.

Lemma 3.1 Let

ωj = ‖wj‖2 + α‖B0(wj , wj)‖2
0, j = 0, 1, ..., N. (45)

Then

i∑
j=0

τeγjτωj ≤ C1(β, γ, K)
i∑

j=0
τeγjτ‖qj‖2, (46)

C1(β, γ, K) = [β(β−γ)]3/2

K[
√

β(β−γ)−K]2
.

Proof. We set i = j in (41), multiply it with τeγτjwj in V and add for
j = 0, 1, ..., i. After applying the property (38) we obtain subsequently the
inequalities

i∑
j=0

τeγjτωj ≤
i∑

j=1

τ2eγjτ

j−1∑
k=0

gj−kwk, wj


+α

i∑
j=1

τ2eγjτ

j−1∑
k=0

gj−kB0(wk, wk), B0(wj , wj)


0

+
i∑

j=0

τeγjτ ((qj , wj)),
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i∑
j=0

τeγjτωj ≤

τ3

1− ε

i∑
j=1

eγjτ

‖ j−1∑
k=0

gj−kwk‖2 + α‖
j−1∑
k=0

gj−kB0(wk, wk)‖2
0


+

τ

ε(1− ε)

i∑
j=0

eγjτ‖qj‖2, 0 < ε < 1.

Using the growth assumption (37) and the convexity of the function ‖.‖2 we
obtain the estimates

i∑
j=0

τeγjτωj ≤ (47)

K2

1− ε
τ3

i∑
j=1

e(γ−2β)jτ
j−1∑
k=0

eβkτ
j−1∑
k=0

eβkτωk +
τ

ε(1− ε)

i∑
j=0

eγjτ‖qj‖2

=
K2

1− ε
τ3

i∑
j=1

e−(β−γ)jτ − e−(2β−γ)jτ

eβτ − 1

j−1∑
k=0

eβkτωk

+
τ

ε(1− ε)

i∑
j=0

eγjτ‖qj‖2.

We continue with the estimate of the double sum in the last inequality. We
have

i∑
j=1

(e−(β−γ)jτ − e−(2β−γ)jτ )
j−1∑
k=0

eβkτωk ≤
i∑

j=1

j−1∑
k=0

eβkτe(γ−β)jτωk

=
i−1∑
k=0

eβkτ [
i∑

j=k+1

e(γ−β)jτ ]ωk

= e−(β−γ)τ
i−1∑
k=0

eγkτ 1− e(γ−β)(i−k)τ

1− e(γ−β)τ

≤
i−1∑
k=0

eγkτ 1
e(β−γ)τ − 1

ωk ≤
1

(β − γ)τ

i−1∑
k=0

eγkτωk.
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Comparing with (47) we obtain the inequality

i∑
j=0

τeγjτωj ≤ (48)

K2

(1− ε)β(β − γ)

i−1∑
j=0

τeγjτωj +
1

ε(1− ε)

i∑
j=0

τeγjτ‖qj‖2.

Setting

ε = 1− K√
β(β − γ)

we obtain
K2

(1− ε)β(β − γ)
= 1− ε.

The inequality (48) then implies

i∑
j=0

τeγjτωj ≤
1

ε2(1− ε)

i∑
j=0

τeγjτ‖qj‖2

and the estimate (46) folows after realizing that

1
ε2(1− ε)

=
[β(β − γ)]3/2

K[
√

β(β − γ)−K]2
= C1(β, γ, K)

.

Remark 3.2 It was possible to use a simpler approach in the obtaining the
summation estimate. We could apply the discrete Gronwall lemma, but with
significantly larger constant C1, containing the length T of the time interval
in (46).

We continue with uniform a priori estimates.

Lemma 3.3 There holds the estimate

‖wi‖ ≤ C2(β, γ, K)

i−1∑
j=0

τe−γ(i−j)τ‖qj‖2

1/2

+ ‖qi‖, (49)

i = 1, 2, ..., N,

C2(β, γ, K) =
2
√

2K√
2β − γ

C1(β, γ, K)1/2.
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Proof. The equations (41), (45) imply the identity

‖wi‖2 + α‖B0(wi, wi)‖2
0 = a((B(Fi, wi), wi)) + ((qi, wi))

−

τ
i−1∑
j=0

gi−jwj , wi

− α

τ
i−1∑
j=0

gi−jB0(wj , wj), B0(wi, wi)


0

.

Employing the property (38) and Cauchy-Schwarz inequality we obtain the
inequality

‖wi‖ ≤

∥∥∥∥∥∥τ
i−1∑
j=0

gi−jwj

∥∥∥∥∥∥+
√

α

∥∥∥∥∥∥τ
i−1∑
j=0

gi−jB0(wj , wj)

∥∥∥∥∥∥
0

+ ‖qi‖. (50)

Again using the convexity of ‖.‖2 and the properties of exponential func-
tions we arrive at the inequalities

eγiτ

∥∥∥∥∥∥
i−1∑
j=0

gi−jwj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
i−1∑
j=0

gi−je
γ(i−j)τ/2(eγjτ/2wj)

∥∥∥∥∥∥
2

≤
i−1∑
j=0

(−gi−je
γ(i−j)τ/2)

i−1∑
j=0

(−gi−je
γ(i−j)τ/2)eγjτ‖wj‖2 (51)

≤ K2
i−1∑
j=0

e−(β−γ/2)(i−j)τ
i−1∑
j=0

e−(β−γ/2)(i−j)τeγjτ‖wj‖2

≤ K2 1− e−(β−γ/2)iτ

e(β−γ/2)τ − 1

i−1∑
j=0

eγjτ‖wj‖2 ≤ K2

(β − γ/2)τ

i−1∑
j=0

eγjτ‖wj‖2.

In the same way we obtain

eγiτ

∥∥∥∥∥∥
i−1∑
j=0

gi−jB0(wj , wj)

∥∥∥∥∥∥
2

0

≤ K2

(β − γ/2)τ

i−1∑
j=0

eγjτ‖B0(wj , wj)‖2
0. (52)

Combining (50), (51), (52) we obtain the inequality

‖wi‖ ≤
(

2K2

2β − γ

)1/2
τ

i−1∑
j=0

e−γ(i−j)τ‖wj‖2

1/2

+

(
2K2α

2β − γ

)1/2
τ

i−1∑
j=0

e−γ(i−j)τ‖B0(wj , wj)‖2
0

1/2

+ ‖qi‖

13



and applying the estimate (46) we have

‖wi‖ ≤ ‖qi‖+

2
√

2K√
2β − γ

C1(β, γ, K)1/2

τ
i−1∑
j=0

e−γ(i−j)τ‖qj‖2

1/2

, (53)

i = 1, ..., N.

The estimate (49) follows immediatly.

In order to achieve the convergence of the scheme we need the a priori
estimate of the sum of differences δwi. We impose the bounds assumption
on the right-hand side q.

Lemma 3.4 Let

C2(β, γ, K)

i−1∑
j=0

τe−γ(i−j)τ‖qj‖2

1/2

+ ‖qi‖ ≤
1− ε√
α‖B0‖

, ε ∈ (0, 1). (54)

Then

τ
N∑

j=1

‖δwj‖2 ≤ C3(β, γ, K, ε, T ). (55)

Proof. After setting i = j, i = j − 1 in (41) and substracting we have the
identities

δw1 + g1w0 + δB(αB0(w1, w1)− aF1, w1) + αB(g1B0(w0, w0), w1) = δq1,

δwj + δB(αB0(wj , wj)− aFj , wj) + gjw0 + τ
j−1∑
k=1

gj−kδwk +

ταB(gjB0(w0, w0)+
j−1∑
k=1

gj−kδB0(wk, wk), wj) = δqj , j = 2, ..., i.

After multiplying the last identities in the space V with τδwj , j = 1, ..., i
and adding we arrive at

τ
i∑

j=1

‖δwj‖2 − aτ
i∑

j=1

((B(δFj , wj−1) + B(Fj , δwj) , δwj))

14



+α
i∑

j=1

((B(B0(wj , wj), wj)−B(B0(wj−1, wj−1), wj−1) , δwj))

+τ
i∑

j=1

(( gjw0 + αgjB(B0(w0, w0), wj), δwj) )) (56)

+τ2
i∑

j=2

((
j−1∑
k=1

gj−kδwk + αB(gj−kδB0(wk, wk), wj) , δwj))

= τ
i∑

j=1

((δqj , δwj)).

Let us set
wξ = wj−1 + ξ(wj − wj−1), ξ ∈ R

for a fixed j ∈ 1, ..., i. We have then the relation

((B(B0(wj , wj), wj)−B(B0(wj−1, wj−1), wj−1) , δwj)) =

τ

∫ 1

0
[2‖B0(δwj , wξ)‖2

0 + (( B0(wξ, wξ), B0(δwj , δwj) ))0]dξ. (57)

Using the assumption (38) and the relation (57) we obtain from (56) the
inequality

(1− ε

2
)τ

i∑
j=1

‖δwj‖2 ≤ α‖B0‖2 max
j∈{0,...,i}

‖wj‖2 τ
i∑

j=1

‖δwj‖2

+
5
ε
a‖B‖ max

j∈{0,...,i}
‖wj‖2τ

i∑
j=1

‖δFj‖2 (58)

+
5
ε
τ

i∑
j=1

g2
j ‖w0 + αB(B(w0, w0), wj)‖2 +

5
ε
τ

i∑
j=1

‖δqj‖2

+
5
ε
(1 + 2‖B‖‖B0‖ max

j∈{0,...,i}
‖wj‖2)τ3

i∑
j=2

‖
j−1∑
k=1

gj−kδwk‖2.

The assumption (54) and uniform a priori estimates (49) imply the inequality

α‖B0‖2‖wj‖2 ≤ 1− ε for j = 1, ..., N. (59)
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Applying the assumption (59), the a priori estimate (49), the properties
of the function g and the regularity assumptions q ∈ W 1,2(0, T ;V ), F ∈
W 1,2(0, T ;H2(Ω)), we obtain the inequality

τ
i∑

j=1
‖δwj‖2 ≤ c1 + c2τ

2
i∑

j=1

j−1∑
k=1

‖δwk‖2, i = 1, ...N. (60)

The discrete Gronwall lemma [13] (Lemma 10.5) then implies the a priori
estimate

τ
N∑

j=1

‖δwj‖2 ≤ C3, τ =
T

N
. (61)

with a constant C3 ≡ C3(β, γ, K, ε, T ).

In order to perform the convergence analysis we introduce the increasing
sequence {Nn}, lim

n→∞
Nn = ∞. We set

τn =
T

Nn
, tni = iτn, un

i = u(tni ), i = 0, 1, ..., Nn, u : [0, T ] → X,

X − any normed space ,

wn
0 = w0, wn

i = wi, δwn
j =

1
τ
(wn

i − wn
i−1), i = 1, ..., Nn,

where wi ∈ V is a solution of the equation (41) with τ ≡ τn, Fi ≡
Fn

i , gi−j ≡ gn
i−j , qi ≡ qn

i .
Let us further define the following segmentline and step functions deter-

mined by values wn
i , δwn

i :

wn : [0, T ] → V, wn(t) = wn
i−1 + (t− tni )δwn

i , tni−1 ≤ t ≤ tni ,

w̄n : [0, T ] → V, w̄n(0) = w0, w̄n(t) = wn
i , tni−1 < t ≤ tni ,

w̃n : [0, T ] → V, w̃n(0) = 0, w̃n(t) = wn
i−1, tni−1 < t ≤ tni ,

i = 1, ..., Nn.

The next theorem with its proof describes the convergence of the subse-
quence from {wn} to a solution w of the canonical integral equation (36).
We shall verify also the unicity conditions.

Theorem 3.5 Let the function F : [0, T ] → H2(Ω) defined in (12), (13)
fulfil the condition (38), the function g ∈ C(R+) fulfil the growth condition
(37). Let q ∈ W 1,2(0, T ;V ) fulfil the bound

C2(β, γ, K)
(∫ t

0
e−γ(t−s)‖q(s)‖2ds

)1/2

+‖q(t)‖ <
1√

α‖B0‖
∀t ∈ [0, T ]. (62)
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Then there exists a solution w ∈ W 1,2(0, T ;V ) of the equation (36).
If moreover

C2(β, γ, K)
(∫ t

0
e−γ(t−s)‖q(s)‖2ds

)1/2

+ ‖q(t)‖ <

√
β√

α(β + K)‖B0‖
(63)

∀t ∈ [0, T ],

then the solution w ∈ W 1,2(0, T ;V ) of (36) is unique.

Proof. The assumption (62) implies that there exists such ε ∈ (0, 1) and
τ0 > 0 that condition (54) from Lemma 3.4 holds for every τ ∈ (0, τ0) and
the a priori estimate

τn

Nn∑
j=1

‖δwn
j ‖2 ≤ C4

holds.
The sequence of segmentline functions {wn} defined by their discrete

values is then bounded in the space W 1,2(0, T ;V ) :

‖wn‖W 1,2(0,T ;V ) ≤ C5, n ∈ N. (64)

Then there exists its subsequence (again denoted by {wn}) and a function
w ∈ W 1,2(0, T ;V ) such that

wn ⇀ w in W 1,2(0, T ;V ), (65)
wn(t) ⇀ w(t), w̄n(t) ⇀ w(t) in V for every t ∈ [0, T ], (66)
wn ⇀∗ w, w̄n ⇀∗ w in L∞(0, T ;V ), (67)
wn → w, w̄n → w in Lp(0, T ;W 1,r(Ω)), p > 1, r > 1. (68)

Let us introduce the discrete values of the Airy stress function Ψ by

Ψn
i = −αD(0)[B0(wn

i , wn
i ) + τ

i−1∑
j=0

gn
i−jB0(wn

j , wn
j )], (69)

i = 1, ..., Nn, n = 1, 2, ...

The corresponding sequence Ψ̄n of step functions is due to the inquality (52)
and the estimates (46), (49). bounded in the space L∞(0, T ;H2

0 (Ω)) :

‖Ψ̄n‖L∞(0,T ;H2
0 (Ω)) ≤ C6, n = 1, 2, ... (70)
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Then there exists a subsequence (again denoted by Ψ̄n) and a function Ψ ∈
L∞(0, T ;H2

0 (Ω)) such that

Ψ̄n ⇀∗ Ψ in L∞(0, T ;H2
0 (Ω)). (71)

We shall verify that a function Ψ is determined by the expression

Ψ = −αD(0)[B0(w,w) + g ∗B0(w,w)]. (72)

Let us set
B0(w,w) = U, B0(wn, wn) = Un, n = 1, 2, ...

We can express the functions Ψ̄n in a following way:

Ψ̄n(t) = −αD(0)
[
Ūn(t) +

∫ t

0
g(t− s)Ũn(s)ds

]
+ (73)

αD(0)

[∫ tni

t
g(t− s)Ũn(s)ds +

∫ tni

0
(g(t− s)− g(tni − s))Ũn(s)ds

]
,

tni−1 < t ≤ tni , i = 1, ..., Nn.

Applying the property (31), the convergence (68) and the boundedness
of {w̄n}, {w̃n} in L∞(0, T ;V ) and hence also in L∞(0, T ;W 1,4(Ω)) we obtain
the convergence

Ūn → U in Lp(0, T ;H2
0 (Ω)), (74)

Ũn → U in Lp(0, T ;H2
0 (Ω)) ∀p > 1. (75)

The operator G : Lp(0, T ;H2
0 (Ω)) → Lp(0, T ;H2

0 (Ω)) defined by

(Gu)(t) =
∫ t

0
g(t− s)u(s)ds, u ∈ Lp(0, T ;H2

0 (Ω))

is linear and continuous and the convergence

GŨn → GU in Lp(0, T ;H2
0 (Ω)) (76)

follows.
The function defined by the sum of the second and the third integral in

(73) converges strongly to 0 in Lp(0, T ;H2
0 (Ω)) as a consequence of previous

a priori estimates and properties of the function g. Then we obtain using
(74), (76) the relations (71), (72). Moreover we have the strong convergence
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Ψ̄n → Ψ in Lp(0, T ;H2
0 (Ω)), p > 1. (77)

The equations (41) for i = 1, ..., Nn can be expressed in a form

w̄n(t)− 1
D(0)

B(F̄n + Ψ̄n, w̄n)(t) + Gw̃n(t) + (78)∫ tni

t
g(t− s)w̃n(s)ds +

∫ tni

0
(g(t− s)− g(tni − s))w̃n(s)ds = qn(t),

tni−1 < t ≤ tni , i = 1, ..., Nn.

Applying the convergence (68), (77), the regularity of the functions F :
[0, T ] → H2(Ω), q : [0, T ] → V and the relation (72) we obtain in the same
way as above that the function w fulfils the canonical equation (36).

Let the assumption (63) hold. We shall verify the uniqueness of a solution
which implies that the convergence (65)-(68), (71), (77) holds for the whole
sequence {wn, Ψ̄n}.

Let w1 and w2 be two solutions of the equation (36). They fulfil the
equations

wi(t)− aB(F (t), wi(t)) + (g ∗ wi)(t) + (79)
αB[B0(wi, wi)(t) + (g ∗B0(wi, wi))(t), wi(t)] = q(t), t ∈ [0, T ].

The difference u = w2 − w1 then fulfils the equation

u(t)− aB(F (t), u(t)) + (g ∗ u)(t)
+αB (B0(w2, w2)(t) + (g ∗B0(w2, w2))(t), w2(t))
−αB (B0(w1, w1)(t) + (g ∗B0(w1, w1))(t), w1(t)) = 0.

Let wξ = w1 + ξ(w2 − w1), ξ ∈ R . There hold the relations

(( B(B0(w2, w2), w2)(t)−B(B0(w1, w1), w1)(t), u(t) )) (80)

=
∫ 1

0
[2‖B0(u(t), wξ(t))‖2

0 + (( B0(wξ, wξ)(t), B0(u(t), u(t)) ))0]dξ,

(( B(g ∗B0(w2, w2))(t), w2(t))−B(g ∗B0(w1, w1))(t), w1)(t)), u(t) ))

= 2
∫ 1

0
(( g ∗B0(u, wξ)(t)), B0(u, wξ)(t) ))0dξ (81)

+
∫ 1

0
(( (g ∗B0(wξ, wξ))(t), B0(u, u)(t) ))0dξ.
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Using the assumption (38) and the relations (80), (81) we obtain the
inequality

‖u‖2 + ((
∫ t

0
g(t− s)u(s)ds, u(t) ))

+α

∫ 1

0
[2‖B0(u(t), wξ(t))‖2

0 + (( B0(wξ, wξ)(t), B0(u, u)(t) ))0]dξ

+α

∫ 1

0
[2((

∫ t

0
g(t− s)B0(u, wξ)(s)ds, B0(u, wξ)(t) ))0

+((
∫ t

0
g(t− s)B0(wξ, wξ)(s)ds, B0(u, u)(t) ))0 ]dξ ≤ 0.

After applying the growth assumption (37) we arrive at the inequality with
an arbitrary ε > 0 :

(1− ε)[‖u(t)‖2 + 2α

∫ 1

0
‖B0(u(t), wξ(t))‖2dξ] ≤

α‖B0‖2(1 +
K

β
) max{ max

t∈[0,T ]
‖w1(t)‖2, max

t∈[0,T ]
‖w2(t)‖2}+

C(ε)
∫ t

0
[‖u(s)‖2 + 2α

∫ 1

0
‖B0(u(s), wξ(s))‖2dξ]ds for all t ∈ [0, T ]

Using the same approach as in the discrete case (Lemma 3.2, Lemma 3.3)
the estimates

‖wi(t)‖ ≤ C2(β, γ, K)(
∫ t

0
e−γ(t−s)‖q(s)‖2ds)1/2 + ‖q(t)‖, (82)

t ∈ [0, T ], i = 1, 2 (83)

can be derived. The assumption (63) then implies

‖wi(t)‖2 < [α‖B0‖2(1 +
K

β
)]−1 for all t ∈ [0, T ], i = 1, 2. (84)

Then there exists such ε > 0 that there holds the inequality

[‖u(t)‖2 + 2α

∫ 1

0
‖B0(u(t), wξ(t))‖2dξ] ≤

C(ε)
ε

∫ t

0
[‖u(s)‖2 + 2α

∫ 1

0
‖B0(u(s), wξ(s))‖2dξ]ds for all t ∈ [0, T ]

and the uniqueness of a solution follows after applying the Gronwall lemma.
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Remark 3.6 If F ∈ W 1,∞(0, T ;H2(Ω)) and q ∈ W 1,∞(0, T ;V ) then we
obtain in the same way as in Lemma 3.4 the a priori estimate of the norms
‖δwn

i ‖ and the boundedness of the sequence {wn} in W 1,∞(0, T ;V ). In this
case is the condition (62) sufficient both for the existence and the uniqueness
of a solution w ∈ W 1,∞(0, T ;V ).

Applying Theorem 3.5 we obtain directly a theorem on the existence and
the uniqueness of a weak solution of the original system (1)-(6).

Theorem 3.7 Let the function F : [0, T ] → H2(Ω) defined in (12), (13)
fulfil the condition (39) and the positive relaxation function E ∈ C1(R+)
fulfil the growth condition

0 < −E′(t) ≤ KE(0)e−βt, t ≥ 0, 0 < K < β − γ, γ > 0.

Let

f ∈ W 1,2(0, T ;V ∗),
mi ∈ W 1,2(0, T ;Lp(Γi)), i = 2, 3, t3 ∈ W 1,2(0, T ;Lp(Γ3)).

Let a linear continuous functional L(t) ∈ V ∗ defined by

〈L(t), v〉 =∫
Γ2

m2(t)
∂v

∂ν
dσ +

∫
Γ3

(m3(t)
∂v

∂ν
+ t3(t)v)dσ + 〈f(t), v〉 ∀v ∈ V

fulfil the condition

C2(β, γ, K)
(∫ t

0
e−γ(t−s)‖L(s)‖2

∗ds

)1/2

+ ‖L(t)‖∗ <
D(0)√
α‖B0‖

∀t ∈ [0, T ].

Then there exists a weak solution

{w,Φ} = {w,Ψ + F} ∈ W 1,2(0, T ;V )× C([0, T ];H2(Ω)),

Ψ(t) = −h

2
[E(0)B0(w,w)(t) + E′ ∗B0(w,w)(t)], t ∈ [0, T ].

of the von Kármán system (1)- (6).
If moreover

C2(β, γ, K)
(∫ t

0 e−γ(t−s)‖L(s)‖2
∗ds
)1/2

+ ‖L(t)‖∗ <
D(0)

√
β√

α(β+K)‖B0‖

∀t ∈ [0, T ],

then a solution {w,Φ} ∈ W 1,2(0, T ;V )× C([0, T ];H2(Ω)) is unique.
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4 The Behaviour of a Solution for t →∞
We have verified in [1] that the conditions

lim
t→∞

q(t) = q∞ lim
t→∞

q′(t) = 0 in H2
0 (Ω)

imply that a solution w of the nonlinear pseudoparabolic problem

w′(t) + aw(t) + bB(B(w,w)′ + aB(w,w), w)(t) =
q′(t) + βq(t), (85)
w(0) + bB(B(w(0), w(0)), w(0)) = q(0) (86)

fulfils the limit behaviour

lim
t→∞

w(t) = w∞ in H2
0 (Ω), (87)

where w∞ is a solution of the stationary problem

aw∞ + abB(B(w∞, w∞), w∞) = q∞.

The initial value problem (85), (86) is equivalent with the problem (36) if
we set

V = H2
0 (Ω), F (t) ≡ 0, B0 = B, E(t) = E0 + βE1e

−βt.

The stationary problem (86) can be expressed in a form

D∞w∞ +
hE∞

2
B(B(w∞, w∞), w∞) = D(0)q∞.

This behaviour of a solution w for large values of the time variable can
be verified for the problem (36) with a general relaxation function E. We
assume only the bound on the limit right-hand side q∞.

Theorem 4.1 Let q ∈ C([0,∞), V ) and q∞ ∈ V be such that

lim
t→∞

q(t) = q∞, (88)

‖q∞‖ ≤
√

γ(2β − γ)√
2αβ‖B0‖

C7(β, γ, K), (89)

C7(β, γ, K) =
[
1 +

β(β + K)
2(β −K)2

+
K

γ

(
8K

2β − γ
+

1
2

)
C1(β, γ, K)

]−1/2

.
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Let the functions E ∈ C1([0,∞);R), F ∈ C([0,∞),H2(Ω)) fulfil

0 < −E′(t) ≤ KE(0)e−βt, t ≥ 0, 0 < K < β − γ, γ > 0, (90)
lim
t→∞

E(t) = E∞, (91)

((B(F (t), v), v)) ≤ 0 for all t ∈ [0,∞) and v ∈ V, (92)
lim
t→∞

F (t) = F∞ in H2(Ω). (93)

If w ∈ C([0,∞), V ) is a solution of the equation

D(0)w(t) + D′ ∗ w(t)−B(F (t), w(t)) + (94)
h

2
[B(E(0)B0(w,w)(t) + E′ ∗B0(w,w)(t), w(t))] = D(0)q(t),

then
lim
t→∞

w(t) = w∞ in V, (95)

where w∞ ∈ V satisfies the equation

D∞w∞ −B(F∞, w∞) +
h

2
E∞B(B0(w∞, w∞), w∞) = D(0)q∞. (96)

Proof. The existence and uniqueness of the function w∞ ∈ V is assured due
to the theory of stationary von Kármán equations [5]. Let us set

u(t) = w(t)− w∞. (97)

The function u ∈ C([0,∞), V ) fulfils the identity

D(0)u(t) + D′ ∗ u(t)−B(F (t), u(t))

+
h

2
E(0)[B(B0(w,w)(t), w(t))−B(B0(w∞, w∞), w∞)] (98)

+
h

2
[B(E′ ∗B0(w,w)(t), w(t))−B(E′ ∗B0(w∞, w∞), w∞)] = r(t),

where

r(t) = D(0)[q(t)− q∞]− [D(t)−D∞]w∞ + B(F (t)− F∞, w∞). (99)

Let us set uξ(t) = w∞ + ξu(t). Applying the analogous relations as (80),
(81) we obtain after multiplying the relation (98) with 1

D(0)u(t) in the space
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V the inequality

‖u(t)‖2 + ((
∫ t

0
g(t− s)u(s)ds, u(t) )) +

α

∫ 1

0
[2‖B0(u(t), uξ(t))‖2

0 + (( B0(uξ, uξ)(t), B0(u(t), u(t)) ))0]dξ +

α

∫ 1

0
[2((

∫ t

0
g(t− s)B0(u, uξ)(s)ds, B0(u, uξ)(t) ))0 +

((
∫ t

0
g(t− s)B0(uξ, uξ)(s)ds, B0(u, u)(t) ))0 ]dξ ≤

(( r(t), u(t) )), t ≥ 0.

Let us denote

ω(t) = ‖u(t)‖2 + 2α

∫ 1

0
‖B0(u(t), uξ(t))‖2

0dξ, t ≥ 0.

We obtain for arbitrary ε ∈ (0, 1) the inequality

1− ε

2
ω(t) ≤ 1

2

[
‖g ∗ u(t)‖2 + 2α

∫ 1

0
‖g ∗B0(u(t), uξ)(t)‖2

0dξ

]
+α‖B0‖2

∫ 1

0
[uξ(t)‖2 + K

∫ t

0
e−β(t−s)‖uξ(s)‖2ds]dξ ‖u(t)‖2

+
1
2ε
‖r(t)‖2, t ≥ 0.

Let us assume that there holds for any T ≥ 0 and δ ∈ (0, 1− ε) the estimate

α‖B0‖2
∫ 1

0
[‖uξ(t)‖2 + K

∫ t

0
e−β(t−s)‖uξ(s)‖2ds]dξ <

δ

2
, t ≥ T. (100)

Applying the exponential growth assumption (90) and the Cauchy-Schwarz
inequality in the convolution integrals we obtain the inequality

ω(t) ≤ K2

β(1− δ − ε)

∫ t

0
e−β(t−s)ω(s)ds +

1
ε(1− δ − ε)

‖r(t)‖2, t ≥ T. (101)

Let us set

eβtω(t)− K2

β(1− δ − ε)

∫ t

0
eβsω(s)ds = ρ(t), t ≥ 0 (102)
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with a function ρ ∈ C([0,∞)) fulfilling the inequality

ρ(t) ≤ 1
ε(1− δ − ε)

‖r(t)‖2 ∀ t > T. (103)

After solving the ordinary differential equation (102) we obtain∫ t

0
eβsω(s)ds =

∫ t

0
e

K2

β(1−δ−ε)
(t−s)

ρ(s)ds

and

ω(t) = e−βt

[
ρ(t) +

K2

β(1− δ − ε)

∫ t

0
e

K2

β(1−δ−ε)
(t−s)

ρ(s)ds

]
.

The inequality (103) implies the estimate

ω(t) ≤ 1‖r(t)‖2

ε(1− δ − ε)
+

K2

β(1− δ − ε)
e−κt

∫ T

0
e
− K2

β(1−δ−ε)
s
ρ(s)ds

+
K2

βε(1− δ − ε)2

∫ t

T
e−κ(t−s)‖r(s)‖2ds ∀ t > T, (104)

κ = β − K2

β(1− δ − ε)
.

The assumptions (88), (91), (93) imply

lim
t→∞

r(t) = 0 in V. (105)

In order to obtain the limit

lim
t→∞

ω(t) = 0 (106)

we need to find such value of δ that

β − K2

β(1− δ)
> 0 (107)

In this case there exists such ε ∈ (0, 1) that

β − K2

β(1− δ − ε)
> 0

and hence κ > 0 . Setting

δ =
γ(2β − γ)

β2
(108)
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we obtain (1− δ)β2 = (β − γ)2 and the inequality (107) follows due to the
assumption (90). The convergence (106) implies limt→∞ ‖u(t)‖2 = 0 and
the assertion (95) of the theorem holds.

Hence it remains us to verify for some T > 0 the bound (100) with a
constant δ determined by (108). Let us first estimate the left-hand side of
(100). We have the inequality∫ 1

0
[uξ(t)‖2 + K

∫ t

0
e−β(t−s)‖uξ(s)‖2ds]dξ

≤ 1
2
‖w(t)‖2 +

1
2
(1 +

K

β
)‖w∞‖2 +

K

2

∫ t

0
e−γ(t−s)‖w(s)‖2ds, t ≥ 0.

Applying the continuous analogy of the estimates (46), (49) and the estimate

D(0)
D∞

≤ β

β −K

we obtain

1
2
‖w(t)‖2 +

1
2
(1 +

K

β
) +

K

2

∫ t

0
e−γ(t−s)‖w(s)‖2ds ≤

‖q(t)‖2 +
β(β + K)
2(β −K)2

‖q∞‖2 +

K

(
8K

2β − γ
+

1
2

)
C1(β, γ, K)

∫ t

0
e−γ(t−s)‖q(t)‖2ds, t ≥ 0.

The limit (88) implies

lim
t→∞

∫ t

0
e−γ(t−s)‖q(t)‖2ds =

1
γ
‖q∞‖2.

The estimate (89) then implies the existence of such T > 0 that the estimate
(100) holds with the constant δ defined by (108) and the proof is completed.
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