
BLOCK-FINITE EFFECT ALGEBRAS

AND THE EXISTENCE OF STATES

Zdenka Riečanová

Abstract. Lattice effect algebras generalize orthomodular lattices and MV-algebras in the
quantum or fuzzy probability theory. Every lattice effect algebra E is a union of its maximal
MV-effect subalgebras called blocks of E. We show that an Archimedean lattice effect algebra
with exactly two blocks is either a horizontal sum of two blocks or (up to isomorphism) a direct
product of an MV-effect algebra and a horizontal sum of two blocks. Further, every complete
effect algebra with nontrivial center and finitely many blocks is isomorphic to a direct product
of an MV-effect algebra M (it may be M = {0}) and finitely many effect algebras with trivial
centers and at least two blocks each. As corollaries we obtain the existence of states or
order-continuous subadditive states (probabilities) on some complete or Archimedean effect
algebras with nontrivial center and finitely many blocks.

1. Introduction and basic definitions

In recent years effect algebras [2] or equivalent in some senseD-posets [10], [11] have been
studied as carriers of states or probability measures in the quantum or fuzzy probability
theory.

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure
providing an instrument for studying quantum effects that may be unsharp. Kôpka [10]
introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the
primary operation. For the connection between effect algebras and D-posets we refer to
[1] and [12].

Definition 1.1. A structure (E;⊕, 0, 1) is called an effect-algebra if 0, 1 are two distin-
guished elements and ⊕ is a partially defined binary operation on E which satisfies the
following conditions for any a, b, c ∈ E:
(Ei) b⊕ a = a⊕ b if a⊕ b is defined,
(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a⊕ b = 1 (we put a′ = b),
(Eiv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. In every effect algebra E
we can define the partial operation 	 and the partial order ≤ by putting

a ≤ b and b	 a = c iff a⊕ c is defined and a⊕ c = b .
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Since a⊕ c = a⊕ d implies c = d, the 	 and the ≤ are well defined. If E with the defined
partial order is a lattice (a complete lattice) then (E;⊕, 0, 1) is called a lattice effect algebra
(a complete effect algebra). For more details we refer the reader to [1] and the references
given there.

Definition 1.2. Let (E;⊕, 0, 1) be an effect algebra. Q ⊆ E is called a sub-effect algebra
of E iff

(i) 1 ∈ Q,
(ii) if a, b, c ∈ E with a ⊕ b = c and out of a, b, c at least two elements are in Q then

a, b, c ∈ Q.

Note that if Q is a sub-effect algebra of E then Q with inherited operation ⊕ is an effect
algebra in its own right.

Recall that elements a, b of a lattice effect algebra (E;⊕, 0, 1) are called compatible
(written a↔ b) iff a∨ b = a⊕ (b	 (a∧ b)) (see [11]). P ⊆ E is a set of pairwise compatible
elements if a↔ b for all a, b ∈ P . M ⊆ E is called a block of E iff M is a maximal subset
of pairwise compatible elements. Every block of a lattice effect algebra E is a sub-effect
algebra and a sub-lattice of E and E is a union of its blocks (see [13]). Lattice effect
algebra with a unique block is called an MV-effect algebra. Every block of a lattice effect
algebra is an MV-effect algebra in its own right. In [13] it was proved that every block
M of a lattice effect algebra E is closed with respect to all existing infima and suprema of
subsets of M . We say that M is a full sub-lattice of E.

A lattice effect algebra E is a horizontal sum of blocks if A∩B = {0, 1} holds for every
pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an atom if 0 ≤ b < a implies b = 0.
E is called atomic if for every nonzero element x ∈ E there is an atom a ∈ E with a ≤ x.

An effect algebra E is called Archimedean if for no nonzero element e ∈ E, ne =
e ⊕ e ⊕ · · · ⊕ e (n times) exists for all positive integer n. We write ord(e) = ne ∈ N
if ne is the greatest integer such that nee exists in E. Every complete effect algebra is
Archimedean, [20].

Definition 1.3. Let (E;⊕E , 0E , 1E) and (F ;⊕F , 0F , 1F ) be effect algebras. A bijective
map ϕ : E → F is called an isomorphism if

(i) ϕ(1E) = 1F ,

(ii) for all a, b ∈ E: a ≤ b′ iff ϕ(a) ≤ (ϕ(b)
)′

in which case ϕ(a⊕ b) = ϕ(a)⊕ ϕ(b).
We write E ∼= F . Sometimes we identify E with F = ϕ(E).

Definition 1.4. A map ω : E → [0, 1] ⊆ R is called a state if (i) ω(1) = 1, and (ii) if
a, b ∈ E with a ≤ b′ then ω(a ⊕ b) = ω(a) + ω(b). A state ω is called order-continuous if
for every net (xα)α∈E of elements of E, xα ↓ 0 =⇒ ω(xα) ↓ 0. Here xα ↓ 0 means that
xα1 ≤ xα2 for all α2 ≥ α1, α1, α2 ∈ E and

∧{xα | α ∈ E} = 0.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including
Boolean algebras). Unfortunately, there are even finite (lattice) effect algebras admit-
ting no states, [4], [18]. Some positive results on the existence of states or subadditive
(o)-continuous states (probabilities) were given in [16], [17] and [19].
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In this paper we prove the existence of states or probabilities on some effect algebras
with finitely many blocks, called block-finite. Motivations for that were the results on
decompositions of block-finite orthomodular lattices due to G. Bruns and representations
of finite orthomodular lattices by Greechie diagrams. In a Greechie diagram of an ortho-
modular lattice L, the points are in one-to-one correspondence with atoms of L and the
lines are in one-to-one correspondence with blocks of L. We refer the reader to the book
[9], pp. 40–64 and 297–307 and references given there.

The following lemma will be often used in the sequel.

Lemma 1.5 [8]. In a lattice effect algebra E, for A ⊆ E and b ∈ E such that
∨
A exists

and b↔ a for all a ∈ A, the following conditions are satisfied:
(i) b↔ ∨

A,
(ii)

∨{b ∧ a | a ∈ A} exists,
(iii) b ∧∨A =

∨{a ∧ b | a ∈ A}.

2. Effect algebras with two blocks and trivial center

An element z of an effect algebra E is called central if x = (x ∧ z) ∨ (x ∧ z′) for all
x ∈ E. The center C(E) of E is the set of all central elements of E, [5]. If E is lattice
ordered then z ∈ E is central iff z ∧ z′ = 0 and z ↔ x for all x ∈ E, [12]. Thus in a lattice
effect algebra C(E) = B(E) ∩ S(E), where B(E) =

⋂{M ⊆ E | E is a block of E} is the
compatibility center of E and S(E) = {x ∈ E | x ∧ x′ = 0} is the set of sharp elements of
E. Evidently, B(E) = {x ∈ E | x ↔ y for all y ∈ E}. Moreover, if E is complete then
every block of E is complete and hence B(E) is a complete MV-effect algebra. Further, in
every complete effect algebra E, S(E) is a complete orthomodular lattice and hence C(E)
is a complete Boolean algebra, [15].

Theorem 2.1. If a lattice effect algebra E can be covered by two blocks then E contains
exactly two blocks.

Proof. Let E = M1 ∪ M2, where M1 6= M2 are blocks of E. Assume to the contrary
that there exists a block M of E such that M 6= M1 and M 6= M2. By maximality of
blocks, M 6⊆ M1 and M 6⊆ M2 and hence there are elements x ∈ M \M2, y ∈ M \M1

which gives x ∈ M1 \M2, y ∈ M2 \M1 and x ↔ y. It follows that x, y /∈ {0, 1} and
x ∨ y = x⊕ (y 	 (x ∧ y)) = y ⊕ (x	 (x ∧ y)).

Assume that x∧y /∈M2. Then y	 (x∧y) /∈M2, because otherwise x∧y = y	 (y	 (x∧
y)) ∈M2, which contradicts to the assumption. It follows that y = (x∧y)⊕ (y	 (x∧y)) ∈
M1, a contradiction. Thus x ∧ y ∈M2.

Assume that x∨y /∈M2. Then (x∨y)	y /∈M2 because otherwise x∨y = ((x∨y)	y)⊕y ∈
M2, which contradicts to the assumption. It follows that x 	 (x ∧ y) = (x ∨ y) 	 y ∈ M1

and hence y = (x ∨ y)	 (x	 (x ∧ y)) ∈M1, a contradiction. Thus x ∨ y ∈M2.
We obtain that x ∧ y, x ∨ y ∈ M2 which gives x = (x ∨ y) 	 (y 	 (x ∧ y)) ∈ M2, a

contradiction. We conclude that M = M1 or M = M2.

Lemma 2.2. Let E be a complete effect algebra. If E = M1 ∪M2, where M1 6= M2 are
blocks of E and C(E) = {0, 1} then M1 ∩M2 = {0, 1}.
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Proof. Suppose, contrary to our claim, that M1 ∩M2 6= {0, 1}. Then for every w ∈ (M1 ∩
M2) \ {0, 1} we have w ∧w′ 6= 0 because otherwise w ∈M1 ∩M2 ∩ S(E) = C(E) = {0, 1}.
Let u ∈M1 \M2 and v ∈M2 \M1. Clearly, every chain is in a block of E. Since

u∧ (w∧w′) ≤ w∧w′ ≤ v∨ (w∧w′) and u∧ (w∧w′) ≤ w∧w′ ≤ w∨w′ ≤ v′ ∨ (w∧w′)′

the assumption u∧ (w ∧w′) /∈M2 implies that v ∨ (w ∧w′) ∈M1 and v′ ∨ (w ∧w′)′ ∈M1,
which gives v∧(w∧w′) ∈M1. It follows that v = (v∨(w∧w′))	((w∧w′)	(w∧w′)∧v) ∈M1,
a contradiction. Hence u ∧ (w ∧ w′) ∈ M2. In the same manner we can show that
v ∧ (w ∧ w′) ∈ M1. We conclude that [0, w ∧ w′] ⊆ M1 ∩M2. Put A = {x ∈ M1 ∩M2 |
[0, x] ⊆ M1 ∩M2} and d =

∨
A. Then d ∈ M1 ∩M2, d 6= 0 and, by Lemma 1.5, for

every y ≤ d we have y = y ∧ d =
∨{x ∧ y | [0, x] ⊆ M1 ∩M2} ∈ M1 ∩M2. If d = 1 then

E = M1∩M2, a contradiction. Assume that d < 1. Then d∧d′ 6= 0 and [0, d∧d′] ⊆M1∩M2,
as we have shown above. Further, for every y ∈ E with y ≤ d ⊕ (d ∧ d′) we have either
{y, d, d ∧ d′} ⊆ M1 or {y, d, d ∧ d′} ⊆ M2. By Riesz decomposition property (see [1])
there are u ≤ d, v ≤ d ∧ d′ such that y = u ⊕ v. It follows that y ∈ M1 ∩M2, which
gives d ⊕ (d ∧ d′) ≤ d and hence d ∧ d′ = 0. We obtain that d ∈ C(E) and d /∈ {0, 1}, a
contradiction. We conclude that M1 ∩M2 = {0, 1}.

For a central element d of a lattice effect algebra E the interval [0, d] is a lattice effect
algebra with the unit d and the partial operation ⊕ restricted from E. It is because for
x, y ≤ d with x ⊕ y defined in E we have x ⊕ y ≤ d. Moreover, d = (x ⊕ x′) ∧ d =
(x ∧ d)⊕ (x′ ∧ d) for all x ∈ E which for y ≤ d implies d = y ⊕ (y′ ∧ d), [17].

Lemma 2.3. Let E be a lattice effect algebra.
(i) If d ∈ E is an atom of C(E) then [0, d] is irreducible.

(ii) If for d1, d2 ∈ C(E) the intervals [0, d1] and [0, d2] are MV-effect algebras then [0, d1∨
d2] is an MV-effect algebra.

(iii) If A = {d ∈ C(E) | d 6= 0 and [0, d] is an MV-effect algebra} 6= ∅ and
∨
A exists in

E then w =
∨
A ∈ C(E) and [0, w] is an MV-effect algebra.

Proof. (i) As for every x ≤ d we have d = (x⊕ x′) ∧ d = (x ∧ d)⊕ (x′ ∧ d) = x⊕ (x′ ∧ d),
we obtain that x⊕ x∗ = d iff x∗ = x′ ∧ d. Thus x ∧ x∗ = x ∧ x′ ∧ d = x ∧ x′, which gives
that x∧x∗ = 0 iff x∧x′ = 0. Hence S([0, d]) = S(E)∩ [0, d]. Further, for x, y ≤ d we have
x ↔ y in [0, d] iff x ↔ y in E, because [0, d] is a sub-lattice of E with ⊕ and 	 inherited
from E. Hence B([0, d]) = B(E)∩ [0, d]. We obtain that C([0, d]) = C(E)∩ [0, d] = {0, d}.

(ii) As C(E) = B(E) ∩ S(E) ⊆ B(E) we obtain that d1 ↔ d2 which gives d1 ∨ d2 =
d1 ⊕ (d2 	 (d1 ∧ d2)) = d1 ∨ (d2 	 (d1 ∧ d2)) because C(E) is a Boolean algebra. By
Lemma 1.5, for all x, y ≤ d1∨d2 we have x = x∧(d1∨d2) = (x∧d1)∨(x∧(d2	(d1∧d2)) =
(x∧ d1)⊕ (x∧ (d2	 (d1 ∧ d2)) and similarly y = (y ∧ d1)⊕ (y ∧ (d2	 (d1 ∧ d2)). Moreover,
(x∧d1)⊕(y∧(d2	(d1∧d2)) and (y∧d1)⊕(x∧(d2	(d1∧d2)) exist, because d1⊕(d2	(d1∧d2))
exists. We conclude that the set {x ∧ d1, y ∧ d1, x ∧ (d2 	 (d1 ∧ d2)), y ∧ (d2 	 (d1 ∧ d2))}
is pairwise compatible, which implies that x↔ y.

(iii) Since C(E) is a full sub-lattice of E we have w =
∨
A ∈ C(E). Further, for all

x, y ∈ [0, w] we have x = x ∧ w =
∨{x ∧ d | d ∈ A} and y = y ∧ w =

∨{y ∧ d | d ∈ A}.
Since, by (ii), x ∧ d1 ↔ y ∧ d2 for all d1, d2 ∈ A, we obtain, by Lemma 1.5, that x ↔ y.
This proves that [0, w] is an MV-effect algebra.
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Theorem 2.4. Every Archimedean lattice effect algebra with two blocks and trivial center
is a horizontal sum of its blocks.

Proof. Assume that E is an Archimedean lattice effect algebra, E = M1 ∪M2, where M1

and M2 are two different blocks of E and C(E) = {0, 1}. By [20], up to isomorphism, E
is a supremum-dense sub-effect algebra of a complete effect algebra Ê, being a MacNeille
completion of E. Further, there are blocks M̂1 and M̂2 of Ê such that M1 ⊆ M̂1, M2 ⊆ M̂2

and Ê = M̂1 ∪ M̂2.
Assume that C(Ê) 6= {0, 1}. Then there is w ∈ C(Ê)\{0, 1}. By [5], Ê ∼= [0, w]× [0, w′].

Because, by Theorem 2.1, Ê has exactly two blocks, we obtain that one of the effect
algebras [0, w] and [0, w′] has a unique block and the other has two blocks. Put z =

∨{w ∈
C(Ê) | [0, w] is an MV-effect algebra}. Then z ∈ C(Ê) \ {0, 1} and Ê ∼= [0, z] × [0, z′].
Moreover, by Lemma 2.3, [0, z] is an MV-effect algebra. Further, if there are nonzero
elements z1, z2 ∈ C(Ê) with z1 ⊕ z2 = z′ then E ∼= [0, z] × [0, z1] × [0, z2], where [0, z1]
and [0, z2] have at least two blocks each, because otherwise z1 or z2 is under z ∧ z′ = 0,
a contradiction. We conclude that z′ is an atom of C(Ê). It follows that [0, z′] has a
trivial center, by Lemma 2.3. By Lemma 2.2, [0, z′] is a horizontal sum of its blocks D1

and D2. Let a ∈ D1 \ {0, 1} and b ∈ D2 \ {0, 1}. As E is supremum-dense in Ê, there
are nonzero elements u ∈ D1 ∩ E and v ∈ D2 ∩ E such that u ≤ a and v ≤ b, which
gives that u ∨ v = z′ ∈ E. Hence z′ ∈ C(E) = {0, 1} and so z′ = 0, a contradiction. We
conclude that C(Ê) = {0, 1} and hence Ê is a horizontal sum of M̂1 and M̂2. It follows
that {0, 1} ⊆M1 ∩M2 ⊆ M̂1 ∩ M̂2 = {0, 1}, which proves the theorem.

Corollary 2.5. On every Archimedean lattice effect algebra E with two blocks and trivial
center there exists a state. If E is atomic then there exists an (o)-continuous state on E.

Proof. By Theorem 2.4, for x ∈ M1 and y ∈ M2, where M1,M2 are blocks of E, we have
x ≤ y′ iff at least one of x and y is equal to zero. Because M1 and M2 are MV-effect
algebras, i.e., can be organized into MV-algebras, there exist states ω1 on M1 and ω2 on
M2. Let ω(x) = ω1(x) for all x ∈M1 and ω(x) = ω2(x) for all x ∈M2. Then ω is a state
on E. If E is atomic then M1 and M2 are atomic and Archimedean. By [16] there are
(o)-continuous states ω1 on M1 and ω2 on M2. Hence ω is (o)-continuous.

Note that a state ω in Corollary 2.5 need not be subadditive, i.e., ω(a∨ b) ≤ ω(a) +ω(b)
need not hold for all a, b ∈ E.

Example 2.6. Let E = {0, a, 2a, b, 1} where 1 = 3a = 2b. Hence E is a horizontal sum of
two chains {0, a, 2a, 1 = 3a} and {0, b, 1 = 2b}. Evidently there is the unique state ω on E
for which 1 = ω(a ∨ b) 6≤ ω(a) + ω(b) = 1

3 + 1
2 .

3. Decompositions of complete effect algebras

A direct product of a family {Eκ | κ ∈ H} of effect algebras is the Cartesian product∏{Eκ | κ ∈ H} with “coordinatewise” defined operations, which means that (aκ)κ∈H ⊕
(bκ)κ∈H = (aκ ⊕κ bκ)κ∈H iff aκ ⊕κ bκ is defined in Eκ for all κ ∈ H. Further, (0κ)κ∈H
is the zero and (1κ)κ∈H is the unit in the product.
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Lemma 3.1 [17]. Let (E;⊕, 0, 1) be a complete effect algebra and let D ⊆ C(E). Let∨
D = 1 and d1∧d2 = 0 for all d1 6= d2, d1, d2 ∈ D. Then the effect algebra E is isomorphic

to a direct product
∏{[0, d] | d ∈ D}.

Theorem 3.2. Let E be a complete atomic effect algebra with finitely many blocks and
nontrivial center. Then

(i) C(E) is a complete atomic Boolean algebra.
(ii) E ∼= ∏{[0, pκ ] | κ ∈ H}, where {[pκ | κ ∈ H} is the set of all atoms of C(E).
(iii) For every atom p of C(E) the interval [0, p] is a complete atomic effect algebra with

trivial center.
(iv) Every block of E is isomorphic to a direct product

∏{Bκ | κ ∈ H} for some blocks
Bκ of [0, pκ ], and conversely.

(v) The number n of all blocks of E is equal to the number of all different possibilities
of products

∏{Bκ | κ ∈ H}, for all blocks Bκ of [0, pκ ], κ ∈ H.
(vi) If E is not an MV-effect algebra then there are atoms p1, p2, . . . , pk of C(E) such

that E is isomorphic to
M × [0, p1]× · · · × [0, pk]

where M is a complete atomic MV-effect algebra or M = {0} and [0, pi] for i =
1, . . . , k, are irreducible complete atomic effect algebras with at least two blocks
each.

Proof. (i) For the proof that C(E) is a Boolean algebra we refer the reader to [5]. By
[15] C(E) is complete. Let z ∈ C(E) and a is an atom of E such that a ≤ z. Then
w =

∧{y ∈ C(E) | a ≤ y} ∈ C(E) and w ≤ z. Let v ∈ C(E), v 6= 0 and v < w. Then
a 6≤ v and hence a ≤ v′ which gives v ≤ w ≤ v′, a contradiction. Thus w is an atom of
C(E).

(ii) If {pκ | κ ∈ H} is the set of all atoms of C(E) then evidently
∨{pκ | κ ∈ H} = 1

and pκ1 ∧ pκ2 = 0 for all κ1 6= κ2. Thus the statement follows by Lemma 3.1.
(iii) follows by Lemma 2.3.
(iv) Clearly, (aκ)κ∈H ↔ (bκ)κ∈H iff aκ ↔ bκ for all κ ∈ H because the operations ⊕,

∨ and ∧ in the product are defined coordinatewise. Hence (iv) follows by maximality of
blocks.

(v) is a consequence of (iv).
(vi) The effect algebra [0, pκ ] has a unique block iff it is an MV-effect algebra. Let

H1 = {κ ∈ H | [0, pκ] has a unique block}. Then M =
∏{[0, pκ ] | κ ∈ H1} is an MV-

effect algebra, which is evidently complete and atomic. If E is not an MV-effect algebra
then for some atoms pκ of C(E) the effect algebra [0, pκ] has at least two blocks. Evidently,
there are only finitely many such atoms pκ because E has only finitely many blocks.

Theorem 3.3. Let E be a complete effect algebra with exactly n blocks and nontrivial
center. If n > 1 then:

(i) C(E) has at least one atom.
(ii) If E is not an MV-effect algebra then there are atoms p1, . . . , pk of C(E) such that

E ∼= M × [0, p1]× · · · × [0, pk] where M is a complete MV-effect algebra or M = {0}
and [0, p1], . . . , [0, pk] are irreducible complete effect algebras with at least two blocks
each.



BLOCK-FINITE EFFECT ALGEBRAS AND THE EXISTENCE OF STATES 7

(iii) If n is a prime number, then there is an atom p of C(E) such that E ∼= M × [0, p]
where M 6= {0} is a complete MV-effect algebra and [0, p] is an irreducible effect
algebra with exactly n blocks.

Proof. (i), (ii): Let A = {d ∈ C(E) | d 6= 0 and [0, d] is an MV-effect algebra}. If A = ∅,
we put M = {0} and w = 0. If A 6= ∅, we put M = [0, w]. By Lemma 2.3, [0, w] is an MV-
effect algebra. Further, for every nonzero d ∈ C(E) with d ≤ w′ the effect algebra [0, d]
has at least two blocks. Otherwise, we have d ≤ w∧w′ = 0, a contradiction. Thus there is
only finite set of nonzero elements d1, d2, . . . , dm ∈ C(E) such that w′ = d1⊕d2⊕· · ·⊕dm,
because [0, d1], . . . [0, dm] has at least two blocks each and [0, w′] has exactly n blocks
under which [0, w′] ∼= [0, d1] × · · · × [0, dm]. We conclude that there are atoms p1, . . . , pk
of C(E) such that [0, w′] ∼= [0, p1] × · · · × [0, pk] and hence E ∼= M × [0, p1] × · · · × [0, pk]
where [0, p1], . . . , [0, pk] are irreducible with at least two blocks each and M is a complete
MV-effect algebra or M = {0}. Since E is not an MV-effect algebra, (i) is also proved.

(iii) If n is a prime number then by (ii) there is an atom p of C(E) such that E ∼=
M × [0, p]. Since C(E) 6= {0, 1} we conclude that p 6= 1 and hence M 6= {0}.

4. The existence of (order-continuous) subadditive states

Example 2.3 shows that a state on a lattice effect algebra need not be subadditive. On
the other hand, it was proved in [16] that on every Archimedean atomic distributive effect
algebra there exists an order-continuous subadditive state (a probability). Note that MV-
effect algebras are distributive effect algebras. Finally, note that a state ω on a lattice effect
algebra E is subadditive iff ω(a∨ b) ≤ ω(a) +ω(b) for all a, b ∈ E iff ω(a∨ b) = ω(a) +ω(b)
for all a, b ∈ E with a∧ b = 0 iff ω(a) + ω(b) = ω(a∨ b) + ω(a∧ b) for all a, b ∈ E iff ω is a
valuation, [14]

Theorem 4.1. Let E be a complete effect algebra with exactly n blocks and nontrivial
center.

(i) If n is a prime number then there exists a subadditive state on E.
(ii) If E is atomic and n is a prime number then there exists an (o)-continuous subadditive

state on E (a probability).
(iii) If n = 2k and k is a prime number then there exists a state on E. If, moreover, E is

atomic then there exists an (o)-continuous state on E.

Proof. (i) and (ii): If n = 1 the proof follows by [16]. Let n > 1. By Theorem 3.3,
E ∼= M × [0, p] where M 6= {0} is a complete MV-effect algebra (can be organized into an
MV-algebra) hence there is a subadditive state ω1 on M . Thus ω : E → [0, 1] ⊆ R defined
by ω

(
(x, y)

)
= ω1(x) for all (x, y) ∈M × [0, p] is a subadditive state on E. Moreover, if E

is atomic then by Theorem 3.2, M is a complete atomic MV-effect algebra. By [16] there
is an (o)-continuous subadditive state ω1 on M . Hence the state ω defined above is also
(o)-continuous and subadditive.

(iii) If n = 2k, k is a prime number and E is atomic then by Theorem 3.3 either
E ∼= M × [0, p] or E ∼= M × [0, p1] × [0, p2], where M is a complete MV-effect algebra
[0, p], [0, p1], [0, p2] are complete irreducible effect algebras under which [0, p] has exactly
n blocks, [0, p1] has two blocks and [0, p2] has k blocks. In the first case M 6= {0}. By
Corollary 2.5, there exists a state on [0, p1]. Since a state on M exists, we conclude that
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there exists a state on E. If E is atomic then by [16] and Corollary 2.5, all these states
can be (o)-continuous.

Remark 4.2. A lattice effect algebra E with finitely many blocks can be supremum-densely
embedded (as a sub-effect algebra and a full sub-lattice) into a complete effect algebra Ê
if and only if E is Archimedean, [20]. Moreover, if Mk, k = 1, . . . , n, are blocks of E which
cover E, that means E =

⋃n
k=1Mk, then Ê =

⋃n
k=1 M̂k where M̂k are blocks of Ê such

that Mk ⊆ M̂k, k = 1, 2, . . . , n (see [20], Theorem 4.3). Here, {M1, . . . ,Mk} need not be
the set of all blocks of E (see [9]). Conversely, if Ê =

⋃n
k=1 M̂k then there are blocks Mk of

E such that M̂k ∩ E ⊆Mk and hence E =
⋃n
k=1Mk. It follows that the minimal number

n0 of blocks of E which cover E is equal to the minimal number of blocks of Ê which cover
Ê.

Theorem 4.3. Let E be an Archimedean lattice effect algebra with finitely many blocks
and nontrivial center. Let n0 be the minimal number of blocks which cover E. If n0 is a
prime number then there is a subadditive state on E. If, moreover, E is atomic then there
is an (o)-continuous and subadditive state on E.

Proof. Let Ê be a complete effect algebra in which E is (up to isomorphism) a supremum-
dense sub-effect algebra, [20]. Then C(E) ⊆ C(Ê) and hence C(Ê) 6= {0, 1}. Further,
n0 is a minimal number of blocks of Ê which cover Ê. Assume n0 > 1. Let w =

∨{d ∈
C(Ê) | [0, d] bE has a unique block}. By Lemma 2.3, w ∈ C(Ê), [0, w] bE is an MV-effect
algebra. Moreover, for every nonzero w1 < w′ the effect algebra [0, w1] bE has at least two

blocks. Further, Ê ∼= [0, w] bE × [0, w′] bE which implies that the minimal number of blocks

of [0, w′] bE which cover [0, w′] bE is n0. It follows that w′ is an atom of C(Ê). Really, if

there is a nonzero element w1 ∈ C(Ê) with w1 < w′ then w′ = w1 ⊕ (w′ 	 w1) and
[0, w′] bE ∼= [0, w1] bE × [0, w′ 	 w1] bE cannot be covered by n0 blocks of [0, w′] bE as n0 is a
prime number and every [0, w1] bE and [0, w′ 	 w1] bE has at least two blocks each. Since

C(Ê) 6= {0, 1}, we obtain that w′ 6= 1 and hence w 6= 0 which gives M = [0, w] bE 6= {0}.
Now, the existence of a subadditive state on M implies the existence of a subadditive

state ω̂ on Ê and the restriction ω̂|E is a subadditive state on E. If E is atomic then Ê
and M are atomic and ω̂ can be assumed (o)-continuous by [16].

Corollary 4.4. Let E be a finite lattice effect algebra with nontrivial center. If the
number n of all blocks of E, or the minimal number n0 of blocks which cover E, is a prime
number then there exists a subadditive state on E. If n = 2k and k is a prime number
then there exists a state on E.

Remark 4.5. Since every orthomodular lattice L can be organized into an Archimedean
lattice effect algebra by putting a⊕b = a∨b for all orthogonal pairs a, b ∈ L, we can adopt
results of Theorems 4.1 and 4.3 and Corollary 4.4 for orthomodular lattices (see [9] and
references given there).
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