BLOCK-FINITE EFFECT ALGEBRAS
AND THE EXISTENCE OF STATES

ZDENKA RIECANOVA

ABSTRACT. Lattice effect algebras generalize orthomodular lattices and MV-algebras in the
quantum or fuzzy probability theory. Every lattice effect algebra E is a union of its maximal
MV-effect subalgebras called blocks of . We show that an Archimedean lattice effect algebra
with exactly two blocks is either a horizontal sum of two blocks or (up to isomorphism) a direct
product of an MV-effect algebra and a horizontal sum of two blocks. Further, every complete
effect algebra with nontrivial center and finitely many blocks is isomorphic to a direct product
of an MV-effect algebra M (it may be M = {0}) and finitely many effect algebras with trivial
centers and at least two blocks each. As corollaries we obtain the existence of states or
order-continuous subadditive states (probabilities) on some complete or Archimedean effect
algebras with nontrivial center and finitely many blocks.

1. INTRODUCTION AND BASIC DEFINITIONS

In recent years effect algebras [2] or equivalent in some sense D-posets [10], [11] have been
studied as carriers of states or probability measures in the quantum or fuzzy probability
theory.

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure
providing an instrument for studying quantum effects that may be unsharp. Kopka [10]
introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the
primary operation. For the connection between effect algebras and D-posets we refer to
[1] and [12].

Definition 1.1. A structure (E;®,0,1) is called an effect-algebra if 0, 1 are two distin-
guished elements and & is a partially defined binary operation on E which satisfies the
following conditions for any a,b,c € E:

(Ei) bda=a®bif a®bis defined,

(Eii) (a®b)®c=ad (b c) if one side is defined,
(Eiii) for every a € FE there exists a unique b € E such that a @b =1 (we put a’ = b),
(Eiv) if 1 ® a is defined then a = 0.

We often denote the effect algebra (E;@®,0,1) briefly by E. In every effect algebra E
we can define the partial operation & and the partial order < by putting

a<band bSa=ciff a®cis defined and a ©c=0».
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Since a & ¢ = a @ d implies ¢ = d, the © and the < are well defined. If E with the defined
partial order is a lattice (a complete lattice) then (E;®,0, 1) is called a lattice effect algebra
(a complete effect algebra). For more details we refer the reader to [1] and the references
given there.

Definition 1.2. Let (E;@®,0,1) be an effect algebra. Q) C E is called a sub-effect algebra
of E iff
(i) 1€ @,
(i) if a,b,c € E with a ® b = ¢ and out of a,b, c at least two elements are in () then
a,b,c e Q.

Note that if @) is a sub-effect algebra of F then () with inherited operation & is an effect
algebra in its own right.

Recall that elements a,b of a lattice effect algebra (E;@®,0,1) are called compatible
(written a <> b) iff aVb=a® (bS (aAb)) (see [11]). P C E' is a set of pairwise compatible
elements if a < b for all a,b € P. M C F is called a block of E iff M is a maximal subset
of pairwise compatible elements. Every block of a lattice effect algebra F is a sub-effect
algebra and a sub-lattice of E and E is a union of its blocks (see [13]). Lattice effect
algebra with a unique block is called an MV-effect algebra. Every block of a lattice effect
algebra is an MV-effect algebra in its own right. In [13] it was proved that every block
M of a lattice effect algebra E is closed with respect to all existing infima and suprema of
subsets of M. We say that M is a full sub-lattice of F.

A lattice effect algebra E is a horizontal sum of blocks if AN B = {0, 1} holds for every
pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an atom if 0 < b < a implies b = 0.
E is called atomic if for every nonzero element x € E there is an atom a € E with a < x.

An effect algebra FE is called Archimedean if for no nonzero element e € E, ne =
eded - De (n times) exists for all positive integer n. We write ord(e) = n, € N
if n. is the greatest integer such that n.e exists in £. Every complete effect algebra is
Archimedean, [20].

Definition 1.3. Let (E;®pg,0p,1g) and (F;®p,0r, 1r) be effect algebras. A bijective
map ¢: F — F' is called an isomorphism if

(1) ¢(1g) = 1r,

(ii) for all a,b € E: a <V iff p(a) < (gp(b))/ in which case p(a & b) = p(a) & ¢(b).
We write E = F. Sometimes we identify F with F' = ¢(FE).

Definition 1.4. A map w: F — [0,1] C R is called a state if (i) w(1) = 1, and (i) if
a,b € E with a < then w(a ® b) = w(a) + w(b). A state w is called order-continuous if
for every net (z4)ace of elements of E, z, | 0 = w(zy) | 0. Here z, | 0 means that
Toy < To, forall ag > aq, ag,as € £ and A{z, |a €&} =0.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including
Boolean algebras). Unfortunately, there are even finite (lattice) effect algebras admit-
ting no states, [4], [18]. Some positive results on the existence of states or subadditive
(0)-continuous states (probabilities) were given in [16], [17] and [19].
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In this paper we prove the existence of states or probabilities on some effect algebras
with finitely many blocks, called block-finite. Motivations for that were the results on
decompositions of block-finite orthomodular lattices due to G. Bruns and representations
of finite orthomodular lattices by Greechie diagrams. In a Greechie diagram of an ortho-
modular lattice L, the points are in one-to-one correspondence with atoms of L and the
lines are in one-to-one correspondence with blocks of L. We refer the reader to the book
[9], pp. 40-64 and 297-307 and references given there.

The following lemma will be often used in the sequel.

Lemma 1.5 [8]. In a lattice effect algebra E, for A C E and b € E such that \/ A exists
and b < a for all a € A, the following conditions are satisfied:

(i) b= VA,

(ii)) V{bAa|ae A} exists,

(iii) bAVA=V{aAb]|ac A}

2. EFFECT ALGEBRAS WITH TWO BLOCKS AND TRIVIAL CENTER

An element z of an effect algebra E is called central if © = (z A 2) V (x A 2') for all
x € E. The center C(E) of E is the set of all central elements of E, [5]. If E is lattice
ordered then z € F is central iff zA 2/ =0 and z < z for all z € E, [12]. Thus in a lattice
effect algebra C'(E) = B(E) N S(FE), where B(E) = ({M C E | E is a block of E} is the
compatibility center of E and S(E) = {zx € E | x A a2’ = 0} is the set of sharp elements of
E. Evidently, B(E) = {x € E | ©z <> y for all y € E}. Moreover, if E is complete then
every block of E is complete and hence B(F) is a complete MV-effect algebra. Further, in
every complete effect algebra E, S(FE) is a complete orthomodular lattice and hence C(FE)
is a complete Boolean algebra, [15].

Theorem 2.1. If a lattice effect algebra E can be covered by two blocks then E contains
exactly two blocks.

Proof. Let E = M; U My, where My # M, are blocks of . Assume to the contrary
that there exists a block M of E such that M # M; and M # Ms. By maximality of
blocks, M € M; and M ¢ M and hence there are elements z € M \ Ms, y € M \ M,
which gives x € My \ Ma, y € My \ M; and = < y. It follows that =,y ¢ {0,1} and
zVy=1® (Yo (zAy) =y (z0 (zAy)).

Assume that z Ay ¢ Ms. Then yS (x Ay) ¢ Mas, because otherwise z Ay = yo (yo (x A
y)) € My, which contradicts to the assumption. It follows that y = (z Ay) B (y& (zAy)) €
My, a contradiction. Thus x Ay € Ms.

Assume that xVy ¢ Ms. Then (xVy)Sy ¢ Ms because otherwise xVy = ((xVy)Sy)dy €
Ms, which contradicts to the assumption. It follows that x © (z Ay) = (zVy) ©y € M
and hence y = (zVy) © (x © (x Ay)) € My, a contradiction. Thus x V y € Ms.

We obtain that = A y,x Vy € My which gives z = (x Vy) © (y© (x Ay)) € My, a
contradiction. We conclude that M = My or M = M,.

Lemma 2.2. Let E be a complete effect algebra. If E = M; U My, where My # M are
blocks of E and C(E) = {0,1} then M; N My ={0,1}.
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Proof. Suppose, contrary to our claim, that M; N My # {0,1}. Then for every w € (M; N
M>5) \ {0, 1} we have w A w’ # 0 because otherwise w € My NMyNS(E) =C(E) ={0,1}.
Let u € My \ My and v € My \ M;. Clearly, every chain is in a block of E. Since

uN(wAw') <wAw <oV (wAw') and uA(wAw') <wAw <wVw' <oV (wAw')

the assumption u A (w Aw’) ¢ My implies that vV (w Aw’) € My and V'V (w Aw') € My,
which gives vA(wAw’) € M. It follows that v = (vV(wAw’))O(wAW ) S(wAW')Av) € M,
a contradiction. Hence u A (w A w’') € M. In the same manner we can show that
v A (wAw) € M. We conclude that [0,w A w'] C My N My. Put A ={x € My N M, |
[0,2z] C My N My} and d = \/ A. Then d € My N Ms, d # 0 and, by Lemma 1.5, for
every y < dwe have y =y Ad=\{zAy|[0,2] C My N My} e MyN My If d=1 then
E = MiNMs, a contradiction. Assume that d < 1. Then dAd" # 0 and [0, dAd'] C M1NMa,
as we have shown above. Further, for every y € E with y < d @ (d A d’') we have either
{y,d,d Nd'} C My or {y,d,d Nd'} C Ms. By Riesz decomposition property (see [1])
there are u < d, v < d A d’ such that y = u @ v. It follows that y € M; N M, which
gives d® (d A d') < d and hence d A d’ = 0. We obtain that d € C(F) and d ¢ {0,1}, a
contradiction. We conclude that M; N My = {0, 1}.

For a central element d of a lattice effect algebra E the interval [0, d] is a lattice effect
algebra with the unit d and the partial operation & restricted from E. It is because for
x,y < d with z @& y defined in F we have x ® y < d. Moreover, d = (z ® 2') Ad =
(x Ad) @ (' Nd) for all z € E which for y < d implies d =y @ (y' A d), [17].

Lemma 2.3. Let E be a lattice effect algebra.
(i) If d € E is an atom of C'(E) then [0, d] is irreducible.
(ii) Iffordy,ds € C(FE) the intervals [0, d;] and [0, d2] are MV-effect algebras then [0, d; V
ds] is an MV-effect algebra.
(ii) f A={d € C(E) | d # 0 and [0,d] is an MV-effect algebra} # () and \/ A exists in
E then w=\/ A € C(F) and [0, w] is an MV-effect algebra.

Proof. (i) As for every z <dwehave d=(z @ 2') ANd= (z Nd)® (2’ Nd) =z & (2' AN d),
we obtain that x @ z* =d iff * =2/’ Ad. Thus z Ax* =2 A2’ Ad = x A2, which gives
that z Az* = 0 iff x A2’ = 0. Hence S([0,d]) = S(E)N[0,d]. Further, for z,y < d we have
x < yin [0,d] iff z <> y in E, because [0,d] is a sub-lattice of F with @ and © inherited
from E. Hence B([0,d]) = B(E)N|[0,d]. We obtain that C([0,d]) = C(E)N]0,d] = {0,d}.

(ii) As C(E) = B(E)N S(E) C B(E) we obtain that dy < d2 which gives d; V dy =
diy @ (d2 & (dy Nd2)) = d1 V (d2 © (d1 A dz2)) because C(F) is a Boolean algebra. By
Lemma 1.5, for all ,y < d; Vdy we have z = zA(d1Vda) = (xAdy) V(z A (d2©(d1 Nd2)) =
(xANd1) ® (x A (d2 © (d1 Ndz)) and similarly y = (y Ad1) @ (y A (d2 © (d1 Adz)). Moreover,
(xAd1)D(yA(d2©(d1Ad2)) and (yAdy)B(zA(d26(d1Ad2)) exist, because di B (da&(di Ad2))
exists. We conclude that the set {x Ady,y Ady,z A (da © (dy ANd2)),y A (d2 © (d1 Nda))}
is pairwise compatible, which implies that x < y.

(iii) Since C(F) is a full sub-lattice of F we have w = \/ A € C(FE). Further, for all
z,y € [0,w] we have z =z Aw=\/[{zAd|de A} andy=yAw=\{yAnd|de A}.
Since, by (ii), x A dy < y A dy for all di,ds € A, we obtain, by Lemma 1.5, that z < y.
This proves that [0, w] is an MV-effect algebra.
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Theorem 2.4. Every Archimedean lattice effect algebra with two blocks and trivial center
is a horizontal sum of its blocks.

Proof. Assume that F is an Archimedean lattice effect algebra, F = M7 U My, where M;
and Mj are two different blocks of E' and C(E) = {0,1}. By [20], up to isomorphism, E
is a supremum-dense sub-effect algebra of a complete effect algebra E belng a MacNellle
completlon of E Further, there are blocks M1 and Mg of E such that M, C Ml, M, C M2
and E M 1 U MQ

Assume that C(E) # {0,1}. Then there is w € C(E)\{0,1}. By [5], E 2 [0, w] x [0, w'].
Because, by Theorem 2.1, E has exactly two blocks, we obtain that one of the effect
algebras [0, w] and [0, w’] has a unique block and the other has two blocks. Put z = V{w e
C(E) | [0,w] is an MV-effect algebra}. Then z € C(E)\ {0,1} and E = [0, 2] x [0, 2].
Moreover, by Lemma 2.3, [0, z] is an MV-effect algebra. Further, if there are nonzero
elements 21,2 € C(F) with 21 ® 25 = 2/ then E 2 [0,z] x [0, 21] x [0, 23], where [0, 1]
and [0, z3] have at least two blocks each, because otherwise z; or zy is under z A 2/ = 0,
a contradiction. We conclude that z’ is an atom of C(E). It follows that [0,2'] has a
trivial center, by Lemma 2.3. By Lemma 2.2, [0, 2’] is a horizontal sum of its blocks D,
and Dy. Let a € Dy \ {0,1} and b € D, \ {0,1}. As E is supremum-dense in E, there
are nonzero elements v € Dy N E and v € Dy N E such that u < a and v < b, which
gives that u Vv =2 € E. Hence 2’ € C( ) ={0,1} and so 2’ = = 0, a contradiction. We
conclude that C(E) = {0, 1} and hence E is a horizontal sum of M; and M,. It follows
that {0,1} C My N M, C M1 N M2 = {0, 1}, which proves the theorem.

Corollary 2.5. On every Archimedean lattice effect algebra E with two blocks and trivial
center there exists a state. If E is atomic then there exists an (0)-continuous state on E.

Proof. By Theorem 2.4, for x € M; and y € M5, where M, M, are blocks of F, we have
x <y’ iff at least one of x and y is equal to zero. Because M; and My are MV-effect
algebras, i.e., can be organized into MV-algebras, there exist states w; on M; and ws on
M. Let w(z) = wi(z) for all z € M; and w(x) = wy(z) for all x € My. Then w is a state
on E. If E is atomic then M; and M, are atomic and Archimedean. By [16] there are
(0)-continuous states wy; on M; and wy on My. Hence w is (0)-continuous.

Note that a state w in Corollary 2.5 need not be subadditive, i.e., w(aVb) < w(a)+ w(b)
need not hold for all a,b € E.

Example 2.6. Let £ = {0, a,2a,b,1} where 1 = 3a = 2b. Hence F is a horizontal sum of
two chains {0, a,2a,1 = 3a} and {0,b,1 = 2b}. Evidently there is the unique state w on E
for which 1 = w(a Vb) £ w(a) +w(b) = 3 + 3.

3. DECOMPOSITIONS OF COMPLETE EFFECT ALGEBRAS

A direct product of a family {F,, | » € H} of effect algebras is the Cartesian product
[[{E.. | » € H} with “coordinatewise” defined operations, which means that (a,.),.cy ®
(bs¢)secr = (G B2 bs2) s Mt a,, B, b, is defined in E,, for all »x € H. Further, (0,,),.cq
is the zero and (1,,),.cp is the unit in the product.
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Lemma 3.1 [17]. Let (E;®,0,1) be a complete effect algebra and let D C C(E). Let
\V/ D =1andd;Ady =0 for all dy # da, d1,ds € D. Then the effect algebra E is isomorphic
to a direct product [[{[0,d] | d € D}.

Theorem 3.2. Let E be a complete atomic effect algebra with finitely many blocks and
nontrivial center. Then
(i) C(FE) is a complete atomic Boolean algebra.
(ii) £ =[I{[0,p.] | »« € H}, where {[p,. | » € H} is the set of all atoms of C(E).
(iii) For every atom p of C(FE) the interval [0, p| is a complete atomic effect algebra with
trivial center.
(iv) Every block of E is isomorphic to a direct product [[{B,. | » € H} for some blocks
B, of [0,p,.], and conversely.
(v) The number n of all blocks of E is equal to the number of all different possibilities
of products [[{B,. | »# € H}, for all blocks B, of [0,p,.], » € H.
(vi) If E is not an MV-effect algebra then there are atoms pi,pa,...,pr of C(E) such
that E is isomorphic to
M x [0,p1] X -+ x [0, pg]

where M is a complete atomic MV-effect algebra or M = {0} and [0,p;| for i =
1,...,k, are irreducible complete atomic effect algebras with at least two blocks
each.

Proof. (i) For the proof that C'(E) is a Boolean algebra we refer the reader to [5]. By
[15] C(F) is complete. Let z € C(F) and a is an atom of E such that a < z. Then
w=NyeCE)|a<y}eCE)and w <z Letv e C(F), v#0and v < w. Then
a £ v and hence a < v’ which gives v < w < v/, a contradiction. Thus w is an atom of
C(E).

(ii) If {p,. | »« € H} is the set of all atoms of C'(E) then evidently \/{p,. | x € H} =1
and p,,, A p,., = 0 for all s; # 5. Thus the statement follows by Lemma 3.1.

(iii) follows by Lemma 2.3.

(iv) Clearly, (a,.),en < (bs)sen iff a,, < b, for all »x € H because the operations @,
V and A in the product are defined coordinatewise. Hence (iv) follows by maximality of
blocks.

(v) is a consequence of (iv).

(vi) The effect algebra [0,p,.] has a unique block iff it is an MV-effect algebra. Let
Hy = {»x € H | [0,p,.] has a unique block}. Then M = [[{[0,p,] | > € H1} is an MV-
effect algebra, which is evidently complete and atomic. If E is not an MV-effect algebra
then for some atoms p,, of C'(E) the effect algebra [0, p,.] has at least two blocks. Evidently,
there are only finitely many such atoms p,, because F has only finitely many blocks.

Theorem 3.3. Let E be a complete effect algebra with exactly n blocks and nontrivial
center. If n > 1 then:

(i) C(FE) has at least one atom.

(ii) If E is not an MV-effect algebra then there are atoms p1,...,p; of C(E) such that
E =M x[0,p1] X ---x[0,pr] where M is a complete MV-effect algebra or M = {0}
and [0,p1], ..., [0, px| are irreducible complete effect algebras with at least two blocks
each.
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(iii) If n is a prime number, then there is an atom p of C(E) such that E =~ M x [0, p]
where M # {0} is a complete MV-effect algebra and |0,p] is an irreducible effect
algebra with exactly n blocks.

Proof. (i), (ii): Let A={d € C(E)|d # 0 and [0,d] is an MV-effect algebra}. If A = 0,
we put M = {0} and w = 0. If A # (), we put M = [0, w]. By Lemma 2.3, [0, w] is an MV-
effect algebra. Further, for every nonzero d € C(FE) with d < w’ the effect algebra [0, d]
has at least two blocks. Otherwise, we have d < w A w’ = 0, a contradiction. Thus there is
only finite set of nonzero elements dy, ds, ..., d,, € C(F) such that w’ = dy Gde ®--- B dp,
because [0,d;],...[0,d,,] has at least two blocks each and [0,w’] has exactly n blocks
under which [0, w'] = [0,d;] X -+ x [0,d,,]. We conclude that there are atoms p1,...,px
of C(F) such that [0,w'] 2 [0,p1] X --- x [0,px] and hence E = M x [0,p1] X -+ x [0, pg]
where [0, p1],..., [0, px] are irreducible with at least two blocks each and M is a complete
MV-effect algebra or M = {0}. Since E is not an MV-effect algebra, (i) is also proved.

(iii) If » is a prime number then by (ii) there is an atom p of C(E) such that E =
M x [0, p]. Since C(E) # {0,1} we conclude that p # 1 and hence M # {0}.

4. THE EXISTENCE OF (ORDER—CONTINUOUS) SUBADDITIVE STATES

Example 2.3 shows that a state on a lattice effect algebra need not be subadditive. On
the other hand, it was proved in [16] that on every Archimedean atomic distributive effect
algebra there exists an order-continuous subadditive state (a probability). Note that MV-
effect algebras are distributive effect algebras. Finally, note that a state w on a lattice effect
algebra F is subadditive iff w(a V) < w(a)+w(b) for all a,b € F iff w(aVb) = w(a)+w(b)
for all a,b € E with aAb=0iff w(a) +w(b) =w(aVb)+w(aAb) for all a,b € E iff w is a
valuation, [14]

Theorem 4.1. Let E be a complete effect algebra with exactly n blocks and nontrivial
center.
(i) If n is a prime number then there exists a subadditive state on E.
(ii) IfFE is atomic and n is a prime number then there exists an (0)-continuous subadditive
state on E (a probability).
(iii) If n = 2k and k is a prime number then there exists a state on E. If, moreover, E is
atomic then there exists an (0)-continuous state on E.

Proof. (i) and (ii): If n = 1 the proof follows by [16]. Let n > 1. By Theorem 3.3,
E = M x [0,p] where M # {0} is a complete MV-effect algebra (can be organized into an
MV-algebra) hence there is a subadditive state wq on M. Thus w: E — [0,1] C R defined
by w((z,y)) = wi(z) for all (z,y) € M x [0,p] is a subadditive state on E. Moreover, if E
is atomic then by Theorem 3.2, M is a complete atomic MV-effect algebra. By [16] there
is an (o0)-continuous subadditive state wy on M. Hence the state w defined above is also
(0)-continuous and subadditive.

(iii) If n = 2k, k is a prime number and E is atomic then by Theorem 3.3 either
E = Mx|[0,p] or E = M x [0,p1] x [0,p2], where M is a complete MV-effect algebra
[0, pl, [0, p1], [0, p2] are complete irreducible effect algebras under which [0, p] has exactly
n blocks, [0,p1] has two blocks and [0, po] has k blocks. In the first case M # {0}. By
Corollary 2.5, there exists a state on [0, p;]. Since a state on M exists, we conclude that
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there exists a state on E. If E is atomic then by [16] and Corollary 2.5, all these states
can be (0)-continuous.

Remark 4.2. A lattice effect algebra F with finitely many blocks can be supremum-densely
embedded (as a sub-effect algebra and a full sub-lattice) into a complete effect algebra E
if and only if F is Archimedean, [20]. Moreover, if M, K, k=1,...,n, are blocks of £ which
cover E, that means E = J;_; M}, then E = Ui, Mk Where Mk are blocks of E such
that My C My, k=1,2,....n n (see [20], Theorem 4.3). Here, {M;, ..., My} need not be
the set of all blocks of F (see [9]). Conversely, if £ = Ui, M,, then there are blocks M), of
FE such that ]\//fk NE C M, and hence F = UZ:1 M. It follows that the minimal number

ng of blocks of E which cover F is equal to the minimal number of blocks of E which cover
E.

Theorem 4.3. Let E be an Archimedean lattice effect algebra with finitely many blocks
and nontrivial center. Let ng be the minimal number of blocks which cover E. If ng is a
prime number then there is a subadditive state on E. If, moreover, E is atomic then there
is an (o)-continuous and subadditive state on E.

Proof. Let E bea complete effect algebra in which F is (up to isomorphism) a supremum-
dense sub-effect algebra, [20]. Then C(E) C C(E) and hence C(E) # {0,1}. Further,
ng is a minimal number of blocks of E which cover E. Assume ng > 1. Let w = \/{d €
C(E) | [0,d]z has a unique block}. By Lemma 2.3, w € C(E), [0, w]z is an MV-effect
algebra. Moreover, for every nonzero w; < w’ the effect algebra [0, ]z has at least two

blocks. Further, E 2 [0, w]z % [0,w’] 5 which implies that the minimal number of blocks
of [0,w']z which cover [0,w']5 is ng. It follows that w’ is an atom of C(E). Really, if

there is a nonzero element w; € C’(E) with wy < w’ then v’ = w; & (W' & wy) and
[0,w']5 = [0,w1]z x [0,w" © wi]z cannot be covered by ng blocks of [0,w']5 as ng is a
prlme number and every [0, w1] E and [0,w’ © w;]z has at least two blocks each. Since

C(E) # {0,1}, we obtain that w’ # 1 and hence w # 0 which gives M = [0, w] g # {0}

Now, the existence of a subadditive state on M implies the existence of a subadditive
state @ on E and the restriction W|g is a subadditive state on E. If F is atomic then E
and M are atomic and & can be assumed (0)-continuous by [16].

Corollary 4.4. Let E be a finite lattice effect algebra with nontrivial center. If the
number n of all blocks of E/, or the minimal number ng of blocks which cover FE, is a prime
number then there exists a subadditive state on E. If n = 2k and k is a prime number
then there exists a state on F.

Remark 4.5. Since every orthomodular lattice L can be organized into an Archimedean
lattice effect algebra by putting a ®b = a Vb for all orthogonal pairs a,b € L, we can adopt
results of Theorems 4.1 and 4.3 and Corollary 4.4 for orthomodular lattices (see [9] and
references given there).
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