BLOCK-FINITE EFFECT ALGEBRAS AND THE EXISTENCE OF STATES

Zdenka Riečanová

ABSTRACT. Lattice effect algebras generalize orthomodular lattices and MV-algebras in the quantum or fuzzy probability theory. Every lattice effect algebra E is a union of its maximal MV-effect subalgebras called blocks of E. We show that an Archimedean lattice effect algebra with exactly two blocks is either a horizontal sum of two blocks or (up to isomorphism) a direct product of an MV-effect algebra and a horizontal sum of two blocks. Further, every complete effect algebra with nontrivial center and finitely many blocks is isomorphic to a direct product of an MV-effect algebra M (it may be $M = \{0\}$) and finitely many effect algebras with trivial centers and at least two blocks each. As corollaries we obtain the existence of states or order-continuous subadditive states (probabilities) on some complete or Archimedean effect algebras with nontrivial center and finitely many blocks.

1. INTRODUCTION AND BASIC DEFINITIONS

In recent years effect algebras [2] or equivalent in some sense D-posets [10], [11] have been studied as carriers of states or probability measures in the quantum or fuzzy probability theory.

Effect algebras have been introduced by Foulis and Bennet [2] as an algebraic structure providing an instrument for studying quantum effects that may be unsharp. Kôpka [10] introduced a D-poset of fuzzy sets in which the operation of difference of fuzzy sets is the primary operation. For the connection between effect algebras and D-posets we refer to [1] and [12].

Definition 1.1. A structure $(E; \oplus, 0, 1)$ is called an *effect-algebra* if 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on E which satisfies the following conditions for any $a, b, c \in E$:

(Ei) $b \oplus a = a \oplus b$ if $a \oplus b$ is defined,

(Eii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined,

(Eiii) for every $a \in E$ there exists a unique $b \in E$ such that $a \oplus b = 1$ (we put a' = b), (Eiv) if $1 \oplus a$ is defined then a = 0.

We often denote the effect algebra $(E; \oplus, 0, 1)$ briefly by E. In every effect algebra E we can define the partial operation \ominus and the partial order \leq by putting

 $a \leq b$ and $b \ominus a = c$ iff $a \oplus c$ is defined and $a \oplus c = b$.

¹⁹⁹¹ Mathematics Subject Classification. 03G12, 06C15, 60B99, 81P10.

Key words and phrases. effect algebras, blocks, center, block-finite effect algebras, states, probabilities. The paper has been supported by grant 1/7625/20 of MŠ SR.

Since $a \oplus c = a \oplus d$ implies c = d, the \ominus and the \leq are well defined. If E with the defined partial order is a lattice (a complete lattice) then $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* (a *complete effect algebra*). For more details we refer the reader to [1] and the references given there.

Definition 1.2. Let $(E; \oplus, 0, 1)$ be an effect algebra. $Q \subseteq E$ is called a *sub-effect algebra* of E iff

- (i) $1 \in Q$,
- (ii) if $a, b, c \in E$ with $a \oplus b = c$ and out of a, b, c at least two elements are in Q then $a, b, c \in Q$.

Note that if Q is a sub-effect algebra of E then Q with inherited operation \oplus is an effect algebra in its own right.

Recall that elements a, b of a lattice effect algebra $(E; \oplus, 0, 1)$ are called *compatible* (written $a \leftrightarrow b$) iff $a \lor b = a \oplus (b \ominus (a \land b))$ (see [11]). $P \subseteq E$ is a set of pairwise compatible elements if $a \leftrightarrow b$ for all $a, b \in P$. $M \subseteq E$ is called a block of E iff M is a maximal subset of pairwise compatible elements. Every block of a lattice effect algebra E is a sub-effect algebra and a sub-lattice of E and E is a union of its blocks (see [13]). Lattice effect algebra with a unique block is called an MV-effect algebra. Every block of a lattice effect algebra is an MV-effect algebra in its own right. In [13] it was proved that every block M of a lattice effect algebra E is closed with respect to all existing infima and suprema of subsets of M. We say that M is a full sub-lattice of E.

A lattice effect algebra E is a *horizontal sum* of blocks if $A \cap B = \{0, 1\}$ holds for every pair of its blocks A and B.

A nonzero element a of an effect algebra E is called an *atom* if $0 \le b < a$ implies b = 0. E is called atomic if for every nonzero element $x \in E$ there is an atom $a \in E$ with $a \le x$.

An effect algebra E is called *Archimedean* if for no nonzero element $e \in E$, $ne = e \oplus e \oplus \cdots \oplus e$ (*n* times) exists for all positive integer *n*. We write $\operatorname{ord}(e) = n_e \in N$ if n_e is the greatest integer such that $n_e e$ exists in E. Every complete effect algebra is Archimedean, [20].

Definition 1.3. Let $(E; \oplus_E, 0_E, 1_E)$ and $(F; \oplus_F, 0_F, 1_F)$ be effect algebras. A bijective map $\varphi: E \to F$ is called an *isomorphism* if

(i) $\varphi(1_E) = 1_F$,

(ii) for all $a, b \in E$: $a \leq b'$ iff $\varphi(a) \leq (\varphi(b))'$ in which case $\varphi(a \oplus b) = \varphi(a) \oplus \varphi(b)$. We write $E \cong F$. Sometimes we identify E with $F = \varphi(E)$.

Definition 1.4. A map $\omega: E \to [0,1] \subseteq R$ is called a *state* if (i) $\omega(1) = 1$, and (ii) if $a, b \in E$ with $a \leq b'$ then $\omega(a \oplus b) = \omega(a) + \omega(b)$. A state ω is called *order-continuous* if for every net $(x_{\alpha})_{\alpha \in \mathcal{E}}$ of elements of $E, x_{\alpha} \downarrow 0 \implies \omega(x_{\alpha}) \downarrow 0$. Here $x_{\alpha} \downarrow 0$ means that $x_{\alpha_1} \leq x_{\alpha_2}$ for all $\alpha_2 \geq \alpha_1, \alpha_1, \alpha_2 \in \mathcal{E}$ and $\bigwedge \{x_{\alpha} \mid \alpha \in \mathcal{E}\} = 0$.

Lattice effect algebras generalize orthomodular lattices and MV-algebras (including Boolean algebras). Unfortunately, there are even finite (lattice) effect algebras admitting no states, [4], [18]. Some positive results on the existence of states or subadditive (o)-continuous states (probabilities) were given in [16], [17] and [19]. In this paper we prove the existence of states or probabilities on some effect algebras with finitely many blocks, called *block-finite*. Motivations for that were the results on decompositions of block-finite orthomodular lattices due to G. Bruns and representations of finite orthomodular lattices by Greechie diagrams. In a Greechie diagram of an orthomodular lattice L, the points are in one-to-one correspondence with atoms of L and the lines are in one-to-one correspondence with blocks of L. We refer the reader to the book [9], pp. 40–64 and 297–307 and references given there.

The following lemma will be often used in the sequel.

Lemma 1.5 [8]. In a lattice effect algebra E, for $A \subseteq E$ and $b \in E$ such that $\bigvee A$ exists and $b \leftrightarrow a$ for all $a \in A$, the following conditions are satisfied:

(i)
$$b \leftrightarrow \bigvee A$$
,

(ii) $\bigvee \{b \land a \mid a \in A\}$ exists,

(iii) $b \land \bigvee A = \bigvee \{a \land b \mid a \in A\}.$

2. Effect algebras with two blocks and trivial center

An element z of an effect algebra E is called *central* if $x = (x \land z) \lor (x \land z')$ for all $x \in E$. The *center* C(E) of E is the set of all central elements of E, [5]. If E is lattice ordered then $z \in E$ is central iff $z \land z' = 0$ and $z \leftrightarrow x$ for all $x \in E$, [12]. Thus in a lattice effect algebra $C(E) = B(E) \cap S(E)$, where $B(E) = \bigcap \{M \subseteq E \mid E \text{ is a block of } E\}$ is the *compatibility center* of E and $S(E) = \{x \in E \mid x \land x' = 0\}$ is the set of *sharp elements* of E. Evidently, $B(E) = \{x \in E \mid x \leftrightarrow y \text{ for all } y \in E\}$. Moreover, if E is complete then every block of E is complete and hence B(E) is a complete MV-effect algebra. Further, in every complete effect algebra E, S(E) is a complete orthomodular lattice and hence C(E) is a complete Boolean algebra, [15].

Theorem 2.1. If a lattice effect algebra E can be covered by two blocks then E contains exactly two blocks.

Proof. Let $E = M_1 \cup M_2$, where $M_1 \neq M_2$ are blocks of E. Assume to the contrary that there exists a block M of E such that $M \neq M_1$ and $M \neq M_2$. By maximality of blocks, $M \not\subseteq M_1$ and $M \not\subseteq M_2$ and hence there are elements $x \in M \setminus M_2$, $y \in M \setminus M_1$ which gives $x \in M_1 \setminus M_2$, $y \in M_2 \setminus M_1$ and $x \leftrightarrow y$. It follows that $x, y \notin \{0, 1\}$ and $x \lor y = x \oplus (y \ominus (x \land y)) = y \oplus (x \ominus (x \land y))$.

Assume that $x \wedge y \notin M_2$. Then $y \ominus (x \wedge y) \notin M_2$, because otherwise $x \wedge y = y \ominus (y \ominus (x \wedge y)) \in M_2$, which contradicts to the assumption. It follows that $y = (x \wedge y) \oplus (y \ominus (x \wedge y)) \in M_1$, a contradiction. Thus $x \wedge y \in M_2$.

Assume that $x \lor y \notin M_2$. Then $(x \lor y) \ominus y \notin M_2$ because otherwise $x \lor y = ((x \lor y) \ominus y) \oplus y \in M_2$, which contradicts to the assumption. It follows that $x \ominus (x \land y) = (x \lor y) \ominus y \in M_1$ and hence $y = (x \lor y) \ominus (x \ominus (x \land y)) \in M_1$, a contradiction. Thus $x \lor y \in M_2$.

We obtain that $x \wedge y, x \vee y \in M_2$ which gives $x = (x \vee y) \ominus (y \ominus (x \wedge y)) \in M_2$, a contradiction. We conclude that $M = M_1$ or $M = M_2$.

Lemma 2.2. Let *E* be a complete effect algebra. If $E = M_1 \cup M_2$, where $M_1 \neq M_2$ are blocks of *E* and $C(E) = \{0, 1\}$ then $M_1 \cap M_2 = \{0, 1\}$.

Proof. Suppose, contrary to our claim, that $M_1 \cap M_2 \neq \{0,1\}$. Then for every $w \in (M_1 \cap M_2) \setminus \{0,1\}$ we have $w \wedge w' \neq 0$ because otherwise $w \in M_1 \cap M_2 \cap S(E) = C(E) = \{0,1\}$. Let $u \in M_1 \setminus M_2$ and $v \in M_2 \setminus M_1$. Clearly, every chain is in a block of E. Since

$$u \wedge (w \wedge w') \leq w \wedge w' \leq v \vee (w \wedge w')$$
 and $u \wedge (w \wedge w') \leq w \wedge w' \leq w \vee w' \leq v' \vee (w \wedge w')'$

the assumption $u \wedge (w \wedge w') \notin M_2$ implies that $v \vee (w \wedge w') \in M_1$ and $v' \vee (w \wedge w')' \in M_1$, which gives $v \wedge (w \wedge w') \in M_1$. It follows that $v = (v \vee (w \wedge w')) \oplus ((w \wedge w') \oplus (w \wedge w') \wedge v) \in M_1$, a contradiction. Hence $u \wedge (w \wedge w') \in M_2$. In the same manner we can show that $v \wedge (w \wedge w') \in M_1$. We conclude that $[0, w \wedge w'] \subseteq M_1 \cap M_2$. Put $A = \{x \in M_1 \cap M_2 \mid [0, x] \subseteq M_1 \cap M_2\}$ and $d = \bigvee A$. Then $d \in M_1 \cap M_2$, $d \neq 0$ and, by Lemma 1.5, for every $y \leq d$ we have $y = y \wedge d = \bigvee \{x \wedge y \mid [0, x] \subseteq M_1 \cap M_2\} \in M_1 \cap M_2$. If d = 1 then $E = M_1 \cap M_2$, a contradiction. Assume that d < 1. Then $d \wedge d' \neq 0$ and $[0, d \wedge d'] \subseteq M_1 \cap M_2$, as we have shown above. Further, for every $y \in E$ with $y \leq d \oplus (d \wedge d')$ we have either $\{y, d, d \wedge d'\} \subseteq M_1$ or $\{y, d, d \wedge d'\} \subseteq M_2$. By Riesz decomposition property (see [1]) there are $u \leq d$, $v \leq d \wedge d'$ such that $y = u \oplus v$. It follows that $y \in M_1 \cap M_2$, which gives $d \oplus (d \wedge d') \leq d$ and hence $d \wedge d' = 0$. We obtain that $d \in C(E)$ and $d \notin \{0, 1\}$, a contradiction. We conclude that $M_1 \cap M_2 = \{0, 1\}$.

For a central element d of a lattice effect algebra E the interval [0, d] is a lattice effect algebra with the unit d and the partial operation \oplus restricted from E. It is because for $x, y \leq d$ with $x \oplus y$ defined in E we have $x \oplus y \leq d$. Moreover, $d = (x \oplus x') \land d = (x \land d) \oplus (x' \land d)$ for all $x \in E$ which for $y \leq d$ implies $d = y \oplus (y' \land d)$, [17].

Lemma 2.3. Let E be a lattice effect algebra.

- (i) If $d \in E$ is an atom of C(E) then [0, d] is irreducible.
- (ii) If for $d_1, d_2 \in C(E)$ the intervals $[0, d_1]$ and $[0, d_2]$ are MV-effect algebras then $[0, d_1 \lor d_2]$ is an MV-effect algebra.
- (iii) If $A = \{d \in C(E) \mid d \neq 0 \text{ and } [0,d] \text{ is an } MV\text{-effect algebra}\} \neq \emptyset \text{ and } \bigvee A \text{ exists in } E \text{ then } w = \bigvee A \in C(E) \text{ and } [0,w] \text{ is an } MV\text{-effect algebra.}$

Proof. (i) As for every $x \leq d$ we have $d = (x \oplus x') \land d = (x \land d) \oplus (x' \land d) = x \oplus (x' \land d)$, we obtain that $x \oplus x^* = d$ iff $x^* = x' \land d$. Thus $x \land x^* = x \land x' \land d = x \land x'$, which gives that $x \land x^* = 0$ iff $x \land x' = 0$. Hence $S([0,d]) = S(E) \cap [0,d]$. Further, for $x, y \leq d$ we have $x \leftrightarrow y$ in [0,d] iff $x \leftrightarrow y$ in E, because [0,d] is a sub-lattice of E with \oplus and \oplus inherited from E. Hence $B([0,d]) = B(E) \cap [0,d]$. We obtain that $C([0,d]) = C(E) \cap [0,d] = \{0,d\}$.

(ii) As $C(E) = B(E) \cap S(E) \subseteq B(E)$ we obtain that $d_1 \leftrightarrow d_2$ which gives $d_1 \vee d_2 = d_1 \oplus (d_2 \ominus (d_1 \wedge d_2)) = d_1 \vee (d_2 \ominus (d_1 \wedge d_2))$ because C(E) is a Boolean algebra. By Lemma 1.5, for all $x, y \leq d_1 \vee d_2$ we have $x = x \wedge (d_1 \vee d_2) = (x \wedge d_1) \vee (x \wedge (d_2 \ominus (d_1 \wedge d_2))) = (x \wedge d_1) \oplus (x \wedge (d_2 \ominus (d_1 \wedge d_2)))$ and similarly $y = (y \wedge d_1) \oplus (y \wedge (d_2 \ominus (d_1 \wedge d_2)))$. Moreover, $(x \wedge d_1) \oplus (y \wedge (d_2 \ominus (d_1 \wedge d_2)))$ and $(y \wedge d_1) \oplus (x \wedge (d_2 \ominus (d_1 \wedge d_2)))$ exist, because $d_1 \oplus (d_2 \ominus (d_1 \wedge d_2))$ exists. We conclude that the set $\{x \wedge d_1, y \wedge d_1, x \wedge (d_2 \ominus (d_1 \wedge d_2)), y \wedge (d_2 \ominus (d_1 \wedge d_2))\}$ is pairwise compatible, which implies that $x \leftrightarrow y$.

(iii) Since C(E) is a full sub-lattice of E we have $w = \bigvee A \in C(E)$. Further, for all $x, y \in [0, w]$ we have $x = x \land w = \bigvee \{x \land d \mid d \in A\}$ and $y = y \land w = \bigvee \{y \land d \mid d \in A\}$. Since, by (ii), $x \land d_1 \leftrightarrow y \land d_2$ for all $d_1, d_2 \in A$, we obtain, by Lemma 1.5, that $x \leftrightarrow y$. This proves that [0, w] is an MV-effect algebra. **Theorem 2.4.** Every Archimedean lattice effect algebra with two blocks and trivial center is a horizontal sum of its blocks.

Proof. Assume that E is an Archimedean lattice effect algebra, $E = M_1 \cup M_2$, where M_1 and M_2 are two different blocks of E and $C(E) = \{0, 1\}$. By [20], up to isomorphism, E is a supremum-dense sub-effect algebra of a complete effect algebra \widehat{E} , being a MacNeille completion of E. Further, there are blocks \widehat{M}_1 and \widehat{M}_2 of \widehat{E} such that $M_1 \subseteq \widehat{M}_1$, $M_2 \subseteq \widehat{M}_2$ and $\widehat{E} = \widehat{M}_1 \cup \widehat{M}_2$.

Assume that $C(\widehat{E}) \neq \{0,1\}$. Then there is $w \in C(\widehat{E}) \setminus \{0,1\}$. By [5], $\widehat{E} \cong [0,w] \times [0,w']$. Because, by Theorem 2.1, \widehat{E} has exactly two blocks, we obtain that one of the effect algebras [0,w] and [0,w'] has a unique block and the other has two blocks. Put $z = \bigvee \{w \in C(\widehat{E}) \mid [0,w] \text{ is an MV-effect algebra} \}$. Then $z \in C(\widehat{E}) \setminus \{0,1\}$ and $\widehat{E} \cong [0,z] \times [0,z']$. Moreover, by Lemma 2.3, [0,z] is an MV-effect algebra. Further, if there are nonzero elements $z_1, z_2 \in C(\widehat{E})$ with $z_1 \oplus z_2 = z'$ then $E \cong [0,z] \times [0,z_1] \times [0,z_2]$, where $[0,z_1]$ and $[0,z_2]$ have at least two blocks each, because otherwise z_1 or z_2 is under $z \wedge z' = 0$, a contradiction. We conclude that z' is an atom of $C(\widehat{E})$. It follows that [0,z'] has a trivial center, by Lemma 2.3. By Lemma 2.2, [0,z'] is a horizontal sum of its blocks D_1 and D_2 . Let $a \in D_1 \setminus \{0,1\}$ and $b \in D_2 \setminus \{0,1\}$. As E is supremum-dense in \widehat{E} , there are nonzero elements $u \in D_1 \cap E$ and $v \in D_2 \cap E$ such that $u \leq a$ and $v \leq b$, which gives that $u \lor v = z' \in E$. Hence $z' \in C(\widehat{E}) = \{0,1\}$ and so z' = 0, a contradiction. We conclude that $\widehat{C}(\widehat{E}) = \{0,1\}$ and hence \widehat{E} is a horizontal sum of \widehat{M}_1 and \widehat{M}_2 . It follows that $\{0,1\} \subseteq M_1 \cap M_2 \subseteq \widehat{M}_1 \cap \widehat{M}_2 = \{0,1\}$, which proves the theorem.

Corollary 2.5. On every Archimedean lattice effect algebra E with two blocks and trivial center there exists a state. If E is atomic then there exists an (o)-continuous state on E.

Proof. By Theorem 2.4, for $x \in M_1$ and $y \in M_2$, where M_1, M_2 are blocks of E, we have $x \leq y'$ iff at least one of x and y is equal to zero. Because M_1 and M_2 are MV-effect algebras, i.e., can be organized into MV-algebras, there exist states ω_1 on M_1 and ω_2 on M_2 . Let $\omega(x) = \omega_1(x)$ for all $x \in M_1$ and $\omega(x) = \omega_2(x)$ for all $x \in M_2$. Then ω is a state on E. If E is atomic then M_1 and M_2 are atomic and Archimedean. By [16] there are (o)-continuous states ω_1 on M_1 and ω_2 on M_2 . Hence ω is (o)-continuous.

Note that a state ω in Corollary 2.5 need not be *subadditive*, i.e., $\omega(a \lor b) \le \omega(a) + \omega(b)$ need not hold for all $a, b \in E$.

Example 2.6. Let $E = \{0, a, 2a, b, 1\}$ where 1 = 3a = 2b. Hence E is a horizontal sum of two chains $\{0, a, 2a, 1 = 3a\}$ and $\{0, b, 1 = 2b\}$. Evidently there is the unique state ω on E for which $1 = \omega(a \lor b) \not\leq \omega(a) + \omega(b) = \frac{1}{3} + \frac{1}{2}$.

3. Decompositions of complete effect algebras

A direct product of a family $\{E_{\varkappa} \mid \varkappa \in H\}$ of effect algebras is the Cartesian product $\prod \{E_{\varkappa} \mid \varkappa \in H\}$ with "coordinatewise" defined operations, which means that $(a_{\varkappa})_{\varkappa \in H} \oplus (b_{\varkappa})_{\varkappa \in H} = (a_{\varkappa} \oplus_{\varkappa} b_{\varkappa})_{\varkappa \in H}$ iff $a_{\varkappa} \oplus_{\varkappa} b_{\varkappa}$ is defined in E_{\varkappa} for all $\varkappa \in H$. Further, $(0_{\varkappa})_{\varkappa \in H}$ is the zero and $(1_{\varkappa})_{\varkappa \in H}$ is the unit in the product.

Lemma 3.1 [17]. Let $(E; \oplus, 0, 1)$ be a complete effect algebra and let $D \subseteq C(E)$. Let $\bigvee D = 1$ and $d_1 \wedge d_2 = 0$ for all $d_1 \neq d_2, d_1, d_2 \in D$. Then the effect algebra E is isomorphic to a direct product $\prod \{[0, d] \mid d \in D\}$.

Theorem 3.2. Let E be a complete atomic effect algebra with finitely many blocks and nontrivial center. Then

- (i) C(E) is a complete atomic Boolean algebra.
- (ii) $E \cong \prod \{ [0, p_{\varkappa}] \mid \varkappa \in H \}$, where $\{ [p_{\varkappa} \mid \varkappa \in H \}$ is the set of all atoms of C(E).
- (iii) For every atom p of C(E) the interval [0, p] is a complete atomic effect algebra with trivial center.
- (iv) Every block of E is isomorphic to a direct product $\prod \{B_{\varkappa} \mid \varkappa \in H\}$ for some blocks B_{\varkappa} of $[0, p_{\varkappa}]$, and conversely.
- (v) The number n of all blocks of E is equal to the number of all different possibilities of products $\prod \{B_{\varkappa} \mid \varkappa \in H\}$, for all blocks B_{\varkappa} of $[0, p_{\varkappa}], \varkappa \in H$.
- (vi) If E is not an MV-effect algebra then there are atoms p_1, p_2, \ldots, p_k of C(E) such that E is isomorphic to

$$M \times [0, p_1] \times \cdots \times [0, p_k]$$

where M is a complete atomic MV-effect algebra or $M = \{0\}$ and $[0, p_i]$ for $i = 1, \ldots, k$, are irreducible complete atomic effect algebras with at least two blocks each.

Proof. (i) For the proof that C(E) is a Boolean algebra we refer the reader to [5]. By [15] C(E) is complete. Let $z \in C(E)$ and a is an atom of E such that $a \leq z$. Then $w = \bigwedge \{y \in C(E) \mid a \leq y\} \in C(E)$ and $w \leq z$. Let $v \in C(E)$, $v \neq 0$ and v < w. Then $a \not\leq v$ and hence $a \leq v'$ which gives $v \leq w \leq v'$, a contradiction. Thus w is an atom of C(E).

(ii) If $\{p_{\varkappa} \mid \varkappa \in H\}$ is the set of all atoms of C(E) then evidently $\bigvee \{p_{\varkappa} \mid \varkappa \in H\} = 1$ and $p_{\varkappa_1} \wedge p_{\varkappa_2} = 0$ for all $\varkappa_1 \neq \varkappa_2$. Thus the statement follows by Lemma 3.1.

(iii) follows by Lemma 2.3.

(iv) Clearly, $(a_{\varkappa})_{\varkappa \in H} \leftrightarrow (b_{\varkappa})_{\varkappa \in H}$ iff $a_{\varkappa} \leftrightarrow b_{\varkappa}$ for all $\varkappa \in H$ because the operations \oplus , \lor and \land in the product are defined coordinatewise. Hence (iv) follows by maximality of blocks.

(v) is a consequence of (iv).

(vi) The effect algebra $[0, p_{\varkappa}]$ has a unique block iff it is an MV-effect algebra. Let $H_1 = \{\varkappa \in H \mid [0, p_{\varkappa}] \text{ has a unique block}\}$. Then $M = \prod\{[0, p_{\varkappa}] \mid \varkappa \in H_1\}$ is an MV-effect algebra, which is evidently complete and atomic. If E is not an MV-effect algebra then for some atoms p_{\varkappa} of C(E) the effect algebra $[0, p_{\varkappa}]$ has at least two blocks. Evidently, there are only finitely many such atoms p_{\varkappa} because E has only finitely many blocks.

Theorem 3.3. Let *E* be a complete effect algebra with exactly *n* blocks and nontrivial center. If n > 1 then:

- (i) C(E) has at least one atom.
- (ii) If E is not an MV-effect algebra then there are atoms p_1, \ldots, p_k of C(E) such that $E \cong M \times [0, p_1] \times \cdots \times [0, p_k]$ where M is a complete MV-effect algebra or $M = \{0\}$ and $[0, p_1], \ldots, [0, p_k]$ are irreducible complete effect algebras with at least two blocks each.

(iii) If n is a prime number, then there is an atom p of C(E) such that $E \cong M \times [0, p]$ where $M \neq \{0\}$ is a complete MV-effect algebra and [0, p] is an irreducible effect algebra with exactly n blocks.

Proof. (i), (ii): Let $A = \{d \in C(E) \mid d \neq 0 \text{ and } [0,d] \text{ is an MV-effect algebra}\}$. If $A = \emptyset$, we put $M = \{0\}$ and w = 0. If $A \neq \emptyset$, we put M = [0, w]. By Lemma 2.3, [0, w] is an MVeffect algebra. Further, for every nonzero $d \in C(E)$ with $d \leq w'$ the effect algebra [0, d]has at least two blocks. Otherwise, we have $d \leq w \wedge w' = 0$, a contradiction. Thus there is only finite set of nonzero elements $d_1, d_2, \ldots, d_m \in C(E)$ such that $w' = d_1 \oplus d_2 \oplus \cdots \oplus d_m$, because $[0, d_1], \ldots, [0, d_m]$ has at least two blocks each and [0, w'] has exactly n blocks under which $[0, w'] \cong [0, d_1] \times \cdots \times [0, d_m]$. We conclude that there are atoms p_1, \ldots, p_k of C(E) such that $[0, w'] \cong [0, p_1] \times \cdots \times [0, p_k]$ and hence $E \cong M \times [0, p_1] \times \cdots \times [0, p_k]$ where $[0, p_1], \ldots, [0, p_k]$ are irreducible with at least two blocks each and M is a complete MV-effect algebra or $M = \{0\}$. Since E is not an MV-effect algebra, (i) is also proved.

(iii) If n is a prime number then by (ii) there is an atom p of C(E) such that $E \cong M \times [0, p]$. Since $C(E) \neq \{0, 1\}$ we conclude that $p \neq 1$ and hence $M \neq \{0\}$.

4. The existence of (order-continuous) subadditive states

Example 2.3 shows that a state on a lattice effect algebra need not be subadditive. On the other hand, it was proved in [16] that on every Archimedean atomic distributive effect algebra there exists an order-continuous subadditive state (a probability). Note that MVeffect algebras are distributive effect algebras. Finally, note that a state ω on a lattice effect algebra E is subadditive iff $\omega(a \lor b) \le \omega(a) + \omega(b)$ for all $a, b \in E$ iff $\omega(a \lor b) = \omega(a) + \omega(b)$ for all $a, b \in E$ with $a \land b = 0$ iff $\omega(a) + \omega(b) = \omega(a \lor b) + \omega(a \land b)$ for all $a, b \in E$ iff ω is a valuation, [14]

Theorem 4.1. Let E be a complete effect algebra with exactly n blocks and nontrivial center.

- (i) If n is a prime number then there exists a subadditive state on E.
- (ii) If E is atomic and n is a prime number then there exists an (o)-continuous subadditive state on E (a probability).
- (iii) If n = 2k and k is a prime number then there exists a state on E. If, moreover, E is atomic then there exists an (o)-continuous state on E.

Proof. (i) and (ii): If n = 1 the proof follows by [16]. Let n > 1. By Theorem 3.3, $E \cong M \times [0, p]$ where $M \neq \{0\}$ is a complete MV-effect algebra (can be organized into an MV-algebra) hence there is a subadditive state ω_1 on M. Thus $\omega \colon E \to [0, 1] \subseteq R$ defined by $\omega((x, y)) = \omega_1(x)$ for all $(x, y) \in M \times [0, p]$ is a subadditive state on E. Moreover, if E is atomic then by Theorem 3.2, M is a complete atomic MV-effect algebra. By [16] there is an (o)-continuous subadditive state ω_1 on M. Hence the state ω defined above is also (o)-continuous and subadditive.

(iii) If n = 2k, k is a prime number and E is atomic then by Theorem 3.3 either $E \cong M \times [0, p]$ or $E \cong M \times [0, p_1] \times [0, p_2]$, where M is a complete MV-effect algebra $[0, p], [0, p_1], [0, p_2]$ are complete irreducible effect algebras under which [0, p] has exactly n blocks, $[0, p_1]$ has two blocks and $[0, p_2]$ has k blocks. In the first case $M \neq \{0\}$. By Corollary 2.5, there exists a state on $[0, p_1]$. Since a state on M exists, we conclude that

there exists a state on E. If E is atomic then by [16] and Corollary 2.5, all these states can be (o)-continuous.

Remark 4.2. A lattice effect algebra E with finitely many blocks can be supremum-densely embedded (as a sub-effect algebra and a full sub-lattice) into a complete effect algebra \widehat{E} if and only if E is Archimedean, [20]. Moreover, if M_k , $k = 1, \ldots, n$, are blocks of E which cover E, that means $E = \bigcup_{k=1}^{n} M_k$, then $\widehat{E} = \bigcup_{k=1}^{n} \widehat{M}_k$ where \widehat{M}_k are blocks of \widehat{E} such that $M_k \subseteq \widehat{M}_k$, $k = 1, 2, \ldots, n$ (see [20], Theorem 4.3). Here, $\{M_1, \ldots, M_k\}$ need not be the set of all blocks of E (see [9]). Conversely, if $\widehat{E} = \bigcup_{k=1}^{n} \widehat{M}_k$ then there are blocks M_k of E such that $\widehat{M}_k \cap E \subseteq M_k$ and hence $E = \bigcup_{k=1}^{n} M_k$. It follows that the minimal number n_0 of blocks of E which cover E is equal to the minimal number of blocks of \widehat{E} which cover \widehat{E} .

Theorem 4.3. Let E be an Archimedean lattice effect algebra with finitely many blocks and nontrivial center. Let n_0 be the minimal number of blocks which cover E. If n_0 is a prime number then there is a subadditive state on E. If, moreover, E is atomic then there is an (o)-continuous and subadditive state on E.

Proof. Let \widehat{E} be a complete effect algebra in which E is (up to isomorphism) a supremumdense sub-effect algebra, [20]. Then $C(E) \subseteq C(\widehat{E})$ and hence $C(\widehat{E}) \neq \{0,1\}$. Further, n_0 is a minimal number of blocks of \widehat{E} which cover \widehat{E} . Assume $n_0 > 1$. Let $w = \bigvee \{d \in C(\widehat{E}) \mid [0,d]_{\widehat{E}}$ has a unique block}. By Lemma 2.3, $w \in C(\widehat{E})$, $[0,w]_{\widehat{E}}$ is an MV-effect algebra. Moreover, for every nonzero $w_1 < w'$ the effect algebra $[0,w_1]_{\widehat{E}}$ has at least two blocks. Further, $\widehat{E} \cong [0,w]_{\widehat{E}} \times [0,w']_{\widehat{E}}$ which implies that the minimal number of blocks of $[0,w']_{\widehat{E}}$ which cover $[0,w']_{\widehat{E}}$ is n_0 . It follows that w' is an atom of $C(\widehat{E})$. Really, if there is a nonzero element $w_1 \in C(\widehat{E})$ with $w_1 < w'$ then $w' = w_1 \oplus (w' \ominus w_1)$ and $[0,w']_{\widehat{E}} \cong [0,w_1]_{\widehat{E}} \times [0,w' \ominus w_1]_{\widehat{E}}$ cannot be covered by n_0 blocks of $[0,w']_{\widehat{E}}$ as n_0 is a prime number and every $[0,w_1]_{\widehat{E}}$ and $[0,w' \ominus w_1]_{\widehat{E}}$ has at least two blocks each. Since $C(\widehat{E}) \neq \{0,1\}$, we obtain that $w' \neq 1$ and hence $w \neq 0$ which gives $M = [0,w]_{\widehat{E}} \neq \{0\}$. Now, the existence of a subadditive state on M implies the existence of a subadditive

Now, the existence of a subadditive state on M implies the existence of a subadditive state $\hat{\omega}$ on \hat{E} and the restriction $\hat{\omega}|_E$ is a subadditive state on E. If E is atomic then \hat{E} and M are atomic and $\hat{\omega}$ can be assumed (o)-continuous by [16].

Corollary 4.4. Let *E* be a finite lattice effect algebra with nontrivial center. If the number *n* of all blocks of *E*, or the minimal number n_0 of blocks which cover *E*, is a prime number then there exists a subadditive state on *E*. If n = 2k and *k* is a prime number then there exists a state on *E*.

Remark 4.5. Since every orthomodular lattice L can be organized into an Archimedean lattice effect algebra by putting $a \oplus b = a \lor b$ for all orthogonal pairs $a, b \in L$, we can adopt results of Theorems 4.1 and 4.3 and Corollary 4.4 for orthomodular lattices (see [9] and references given there).

References

[1] A. Dvurečenskij and S. Pulmannová, *New Trends in Quantum Structures*, Kluwer Academic Publishers, Dordrecht, Boston, London and Ister Science, Bratislava, 2000.

- [2] D. Foulis and M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- [3] G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel, Boston, Berlin, 1998.
- [4] R.J. Greechie, Orthomodular lattices admitting no states, J. Combinat. Theory A 10 (1971), 119–132.
- [5] R.J. Greechie, D. Foulis and S. Pulmannová, *The center of an effect algebra*, Order **12** (1995), 91–106.
- [6] P. Hájek, Mathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [7] U. Höhle and E.P. Klement (eds.), Non-classical Logics and their Applications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
- [8] G. Jenča and Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29.
- [9] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983.
- [10] F. Kôpka, *D*-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83-87.
- [11] F. Kôpka, F. and F. Chovanec, Boolean D-posets, Internat. J. Theor. Phys. 34 (1995), 1297–1302.
- [12] Z. Riečanová, Subalgebras, intervals and central elements of generalized effect algebras, Internat. J. Theor. Phys. 38 (1999), 3209–3220.
- [13] Z. Riečanová, Generalization of blocks for D-lattices and lattice ordered effect algebras, Internat. J. Theor. Phys. 39 (2000), 231–237.
- [14] Z. Riečanová, Lattice effect algebras with (o)-continuous faithful valuations, Fuzzy Sets and systems 124 (2001), 321–327.
- [15] Z. Riečanová, Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 525–532.
- [16] Z. Riečanová, Distributive atomic effect algebras, Demonstratio Mathematica 36 (2003) (to appear).
- [17] Z. Riečanová, Continuous lattice effect algebras admitting order continuous states, Fuzzy Sets and Systems (2002) (to appear).
- [18] Z. Riečanová, Proper effect algebras admitting no states, Internat. J. Theor. Phys. 40 (2001), 1683– 1691.
- [19] Z. Riečanová, Smearings of states defined on sharp elements onto effect algebras, Internat J. Theor. Phys. 41 (2002), 1511–1524.
- [20] Z. Riečanová, Archimedean and block-finite effect algebras, Demonstratio Math. 33 (2000), 443–452.

DEPARTMENT OF MATHEMATICS,

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY,

SLOVAK TECHNICAL UNIVERSITY,

Ilkovičova 3,

812 19 BRATISLAVA, SLOVAK REPUBLIC

E-mail address: zriecan@elf.stuba.sk