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Abstract

We deal with the system of quasistationary von Kármán equations
describing moderately large deflections of thin viscoelastic plates. We
shall concentrate on a differential-type material, which gives rise to a
quasistationary system with a linear pseudoparabolic main part and a
nonlinear differential term. This model arises when considering a spe-
cial relaxation function involving only one exponential function. The
existence and the uniqueness of a solution as the limit of a semidis-
crete approximation is verified. Its behaviour for large values of the
time variable is studied.
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1 Introduction

Theodor von Kármán [10] stated the nonlinear system of partial differential
equations for great deflections and for the Airy stress function of a thin
elastic plate. This system has been treated systematically since the sixties
by Berger and Fife [1] who have proved the existence of buckled states for a
plate subjected only to compressive forces. A global existence theorem for a
plate acted upon perpendicular and lateral loading has been established by
Knightly [12]. Ciarlet [6] justified the von Kármán system as the plate model
derived from the equations for a 3-dimensional body. In a comprehensive
work, Fox, Raoult and Simo [8] showed that the von Kármán model, or more
generally Kirchhoff-Love model, actually arises as the third of a hierarchy of
plate models when the orders of magnitude of loads decrease, the first two
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models being the membrane model and the bending model. They give as
well the orders of magnitude of the displacements, thus giving firm grounds
to the assertion that the von Kármán model accounts for moderately large
displacements.

The von Kármán system for viscoelastic plates was derived by J.Brilla
[4], who considered the linearized stability problem for the generalized n-
th order viscoelasticity. We considered in [2] the short memory anisotropic
case, where we derived and solved the pseudoparabolic canonical equation
with zero initial conditions and a nonlinear integral term. The integral term
has in the anisotropic case a rather complicated form defined by the matrix
exponential function.

In the present paper the memory term appears also in the equation for
the Airy stress function. We deal with the long memory isotropic case;
where the nonlinear system and the corresponding canonical equation can
be derived in the same way as the traditional elastic von Kármán system. In
a special case of the exponential relaxation function the integro-differential
stress-strain relation can be converted into a differential relation with a
nonzero initial condition. The main part of resulting system of equations is
linear and pseudoparabolic and a nonlinear differential expression arises in
the right-hand side of the equation for the Airy stress function. The nonlin-
ear pseudoparabolic character remains also in the canonical equation acting
in the Sobolev space of admissible deflections. The presented model is re-
stricted to slow, quasistatic relaxation behaviour only and we neglect inertia
forces. We derive conditions for the existence and uniqueness of a solution
of the canonical initial value problem using the Rothe’s method with respect
to the time variable in a way similar to [9], where the parabolic problem was
considered. Convergence is obtained when an integro-differential expression
depending on the data remains bounded. This condition implies also the
uniqueness. When a more restrictive condition is satisfied, we are able to
give the behaviour of the solution for large values of the time variable.

2 Formulation of the Problem

We consider a thin isotropic plate occupying the domain

Q = {(x, z) ∈ R3; x = (x1, x2) ∈ Ω, −h/2 < z < h/2},

where Ω is a bounded simply connected domain in R2 with a Lipschitz
boundary Γ. The plate is clamped on its boundary and subjected to a per-
pendicular load f(t, x), t > 0, x ∈ Ω. We restrict here to most simple
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boundary conditions. More general and nonhomogeneous boundary condi-
tions can be considered too. We shall deal with them in the second part of
the paper, which will be devoted to the general long memory material ([3]).

Assuming moderately large deflections and considering Kirchhoff-Love
hypothesis ([16]) we have the strain-displacement relations

εij =
1
2
(∂iuj + ∂jui + ∂iw∂jw)− z∂ijw, i, j = 1, 2, ε13 = ε23 = 0.

Let {σij} be the stress tensor fulfilling the condition σ33 = 0. The prin-
ciple of virtual displacements holds in the form∫

Ω

(∫ h/2

−h/2
σijδεijdz

)
dx =

∫
Ω

f(t, x)v(x)dx for all (ω1, ω2, v) ∈ U × U × V,

where v and ωi are virtual displacements in the directions z and xi (i = 1, 2)
respectively and U = H1

0 (Ω), V = H2
0 (Ω) are the spaces of admissible

displacements. The virtual strains are of the form

δεij =
1
2
(∂iωj + ∂jωi + ∂iw∂jv + ∂iv∂jw)− z∂ijv, i, j = 1, 2.

The principle of virtual displacements implies that the stress resultants

Nij =
∫ h/2

−h/2
σijdz

satisfy the homogeneous equations ∂jNij = 0, i, j = 1, 2.
Then there exists the Airy stress function Φ : Ω → R defined by the

equations
N11 = ∂22Φ, N22 = ∂11Φ, N12 = −∂12Φ.

The stress-strain relations for isotropic viscoelastic long memory mate-
rials of Boltzmann type are of the form

σij = E(0)
1−µ2 [(1− µ)εij + µδijεkk] + E′

1−µ2 ∗ [(1− µ)εij + µδijεkk](t), (1)

δ11 = δ22 = 1, δ12 = δ21 = 0, εkk = ε11 + ε22, σ33 = 0

with a Poisson ratio µ ∈ (0, 1
2), a positive decreasing relaxation function

E ∈ C1(R+) and a convolution product

(f ∗ g)(t) =
∫ t

0
f(t− s)g(s)ds.
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Let us set

[v, w] = ∂11v∂22w + ∂22v∂11w − 2∂12v∂12w, v, w ∈ H2(Ω). (2)

We recall that in the elastic case the well known von Kármán system for
the deflection w and the Airy stress function Φ has the form ([7])

D0∆2w − [Φ, w] = f(x) in Ω, w =
∂w

∂ν
= 0 on Γ, (3)

∆2Φ = −E0h

2
[w,w] in Ω, Φ =

∂Φ
∂ν

= 0 on Γ, (4)

E0 > 0, D0 =
h3E0

12(1− µ2)
.

In order to convert a system (3), (4) into one equation for a deflection
function w it is classical to introduce the bilinear operator B : V ×V → V
defined by the uniquelly solved equation

((B(u, v), ϕ)) =
∫
Ω
[u, v]ϕdx for all ϕ ∈ V, (5)

where
((u, v)) =

∫
Ω

∆u∆vdx, ‖u‖ = ((u, u))1/2

are the inner product and the norm in the Sobolev space V = H2
0 (Ω).

The function y ≡ B(u, v) ∈ V is a weak solution of the boundary value
problem

∆2y = [u, v] in Ω, y =
∂y

∂ν
= 0 on Γ.

The existence and the uniqueness of B(u, v) is a consequence of the fact
that the form (v, w) → [u, v] represents the bilinear continuous mapping
[., ] : H2(Ω)×H2(Ω) → L1(Ω) and we have the compact imbedding L1(Ω) ⊂
H−2(Ω) = V ∗ - the dual space of V . Using the Green formula the following
formula for the trilinear form can be derived (see [7])∫

Ω
[u, v]wdx =

∫
Ω

u[v, w]dx for all u, v, w ∈ V. (6)

Moreover there exists a constant c such that

|
∫
Ω
[u, v]wdx| ≤ c‖u‖‖v‖1,4‖w‖1,4 for all u, v, w ∈ V,
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where ‖.‖1,4 is a norm in the Sobolev space W 1,4(Ω). The operator B then
posseses the property

(( B(B(u, v), w), y )) = (( B(u, v), B(w, y) )) for all u, v, w, y ∈ V. (7)

Moreover it is compact and symmetric.
Expressing a weak solution of the boundary value problem (4) by (5) and

inserting it into the equation (3) we obtain the nonlinear boundary value
problem

D0∆2w +
hE0

2
[B(w,w), w] = f(x) in Ω, w =

∂w

∂ν
= 0 on Γ. (8)

Let us define the element q ∈ V uniquely defined as a solution of the
identity

((q, ϕ)) =
1

D0

∫
Ω

fϕdx for all ϕ ∈ V (9)

and the operator

C : V → V, C(v) = αB(B(v, v), v), α =
hE0

2D0
=

6(1− µ2)
h2

. (10)

We formulate the operator equation in the space V

w + C(w) = q, w ∈ V. (11)

We can consider a solution of the equation (11) as a weak solution of the
nonlinear problem (8). The equation (11) is called the canonical equation
for the boundary value problem (3), (4).

The operator C : V → V is compact and not negative. It holds

((C(v), v)) = α‖B(v, v)‖2, v ∈ V. (12)

Moreover C fulfils ([7]) the inequality

((C(u)− C(v), u− v)) ≤ α‖B‖2
L(V×V ;V ) max{‖u‖2, ‖v‖2}‖u− v‖2 (13)

which is very important in the continuity and uniqueness considerations.
The following existence and uniqueness theorem follows.

Theorem 2.1 For every q ∈ V there exists a solution w ∈ V of the
canonical equation (11). If

‖q‖ <
1√

α‖B‖
, (14)

then a solution of (11) is unique.
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Proof. The compactness and symmetry of the operator B together with (12)
imply that there exists a solution w ∈ V of (11) which is simultaneously a
solution of the minimum problem

J(w) = min
v∈V

J(v), J(v) =
1
2
‖v‖2 +

α

4
‖B(v, v)‖2 − ((q, v)).

If w1, w2 ∈ V are two solution of (11), then the difference w = w2−w1

satisfies the relation
w = C(w1)− C(w2).

The inequality (13) implies

‖w‖2 ≤ α‖B‖2 max{‖w1‖2, ‖w2‖2}‖w‖2 (15)

If the bound (14) holds, then applying the relation (12) we obtain

‖wi‖2 ≤ ‖q‖2 <
1

α‖B‖2
, i = 1, 2

and the uniqueness is the consequence of (15). 2

Let us define the material function D(t) = h3

12(1−µ2)
E(t). Applying the

principle of virtual displacements and the viscoelastic stress-strain relations
(1) the following integro-differential von Kármán system for the deflection
w(t, x) and the Airy stress function Φ(t, x), t ≥ 0, x ∈ Ω can be derived:

D(0)∆2w + D′ ∗∆2w − [Φ, w] = f(t), w = ∂w
∂ν = 0 on Γ, (16)

∆2Φ = −h
2 (E(0)[w,w] + E′ ∗ [w,w]), Φ = ∂Φ

∂ν = 0 on Γ. (17)

3 Zener model. Existence and Uniqueness

Most of long memory viscoelastic material are modelled by the relaxation
function of the form ([5])

E(t) = E0 +
k∑

i=1

e−βit, E0 > 0, Ei > 0, βi > 0, i = 1, ..., k.

It is possible in the case k = 1 to transform the integro-differential stress-
strain relations into first order differential relations. Actually, let

E(t) = E0 + E1e
−βt, E0 > 0, E1 > 0, β > 0.
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After differentiating relation (1) we obtain the following differential stres-
strain relation with the initial conditions characterizing the Zener viscoelas-
tic model

σ′ij + βσij =
E0 + E1

1− µ2
[(1− µ)εij + µδijεkk]′ +

βE0

1− µ2
[(1− µ)εij + µδijεkk], (18)

σij(0) =
E0 + E1

1− µ2
[(1− µ)εij + µδijεkk](0). (19)

Let us define the material constants Di = h3

12(1−µ2)
Ei, i = 0, 1. Applying

the same approach as in the elastic case the following pseudoparabolic von
Kármán system for the deflection w and the Airy stress function Φ can be
derived:

(D0 + D1)∆2w′ + βD0∆2w − [Φ, w] = f ′(t) + βf(t), x ∈ Ω,

w =
∂w

∂ν
= 0 on Γ, (20)

∆2Φ = −h

2
(
(E0 + E1)[w,w]′ + βE0[w,w])

)
, x ∈ Ω,

Φ =
∂Φ
∂ν

= 0 on Γ, (21)

w(0, x) = w0(x), x ∈ Ω, (22)

where the initial deflection fulfils the stationary von Kármán system

(D0 + D1)∆2w0 − [Φ0, w0] = f(0), w0 = ∂w0
∂ν = 0 on Γ, (23)

∆2Φ0 = −h
2 (E0 + E1)[w0, w0], Φ0 = ∂Φ0

∂ν = 0 on Γ. (24)

Using the definition (5) of the bilinear operator B : V × V → V we arrive
at the nonlinear pseudoparabolic initial-boundary value problem for the de-
flection w :

(D0 + D1)∆2w′ + βD0∆2w +
h

2
[(E0 + E1)B(w,w)′ + βE0B(w,w), w]

= f ′(t) + βf(t), x ∈ Ω, (25)

w(t) =
∂w(t)
∂ν

= 0 on Γ, t ≥ 0, (26)

(D0 + D1)∆2w(0) +
h

2
[(E0 + E1)B(w(0), w(0)), w(0)] = f(0). (27)
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A weak formulation of the problem can be expressed as a nonlinear pseu-
doparabolic initial value problem in the Hilbert space V :

w′(t) + aw(t) + bB(B(w,w)′ + aB(w,w), w)(t) = q′(t) + βq(t), (28)
w(0) + bB(B(w(0), w(0)), w(0)) = q(0), (29)

where

a =
βD0

D0 + D1
=

βE0

E0 + E1
, b =

h(E0 + E1)
2(D0 + D1)

=
6(1− µ2)

h2

and the function q : [0,∞) → V is uniquely defined as a solution of the
identity

((q(t), v)) =
1

D0 + D1
〈f(t), v〉 for all v ∈ V.

Definition 3.1 Let f ∈ C1([0,∞), V ∗). If w : [0,∞) → V is a solution of
the initial value problem (28), (29) and

Φ(t) = −h

2
[(E0 + E1)B(w,w)′ + βE0B(w,w)], t > 0,

then a function t → {w(t),Φ(t)} is a weak solution of the initial-boundary
value problem (20)-(24).

We now turn to solving the initial value problem (28), (29) by the
semidiscretization or Rothe’s method with respect to the time variable. We
convert problem (28), (29) into a sequence of stationary von Kármán prob-
lems .

For a fixed integer N we set

τ = T
N , ti = iτ, wi = w(ti), i = 0, 1, ..., N ;
δwj = 1

τ (wj − wj−1), j = 1, ..., N.

Applying the discrete values wi and the finite differences δwi in (28), (29)
we obtain the nonlinear equations in the space V :

w0 + bB(B(w0, w0), w0) = q0, (30)
δwi + awi + bB(δB(wi, wi) + aB(wi, wi), wi)

= δqi + βqi, i = 1, ...N. (31)

Both equations above have solutions w0 and wi, i = 1, ..., N respectively.
They are minimizers of the problems

Ji(wi) = min
v∈V

Ji(v), i = 0, 1, ..., N, (32)
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where
J0(v) =

1
2
‖v‖2 +

b

4
‖B(v, v)‖2 − ((q0, v)), (33)

Ji(v) = 1
2(1 + τa)[‖v‖2 + b

2‖B(v, v)‖2]− b
2((B(wi−1, wi−1), B(v, v) ))

−((wi−1 + τ(δqi + βqi), v)), i = 1, ...N. (34)

We continue with deriving the a priori estimates of wi and δwi.

Lemma 3.2 Let α < a
2 . There exists τ0 > 0 such that

‖wi‖2 ≤ e−2ατi‖q0‖2 +
1
a

i∑
j=1

τe−ατ(1+2i−2j)‖δqj + βqj‖2, (35)

i = 1, ..., N, 0 < τ ≤ τ0.

Proof. In order to obtain a priori estimates not depending on the length
T of the time interval we express the values wi in a form

wi = e−ατiui, α > 0, i = 0, 1, ..., N. (36)

We have the following expression of the difference δwi :

δwi = (δe−ατi)ui + e−ατ(i−1)δui, i = 1, ..., N. (37)

After setting i = j in (31) and multiplying with eατjuj in the Hilbert space
V we obtain the identity

eατ ((δuj , uj)) + (a− eατ−1
τ )‖uj‖2 + be−2ατ(j−1)((δB(uj , uj), B(uj , uj)))

+ be−2ατj(a− e2ατ−1
τ )‖B(uj , uj)‖2 = eατj((δqj + βqj , uj)),

j = 1, ..., n.

Summing up and using the relations

2τ
i∑

j=1

((δuj , uj)) = ‖ui‖2 − ‖u0‖2 +
i∑

j=1

τ2‖δuj‖2,

i∑
j=1

eατe−2ατj(( δB(uj , uj), B(uj , uj) )) =

i∑
j=1

((δ(e−ατjB(uj , uj) ), e−ατjB(uj , uj) )) +
eατ − 1

τ

i∑
j=1

e−2ατj‖B(uj , uj)‖2
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we arrive at the inequality

eατ (‖ui‖2 + be−2iατ‖B(ui, ui)‖2)+

2(a− αeατ )
i∑

j=1

τ‖uj‖2 + 2b(a− 2αe2ατ )
i∑

j=1

τe−2ατj‖B(uj , uj)‖2

≤ eατ (‖u0‖2 + b‖B(u0, u0)‖2) + 2
i∑

j=1

τeατj((δqj + βqj , uj)),

i = 1, ..., N.

We obtain directly from the equation (30) the estimate

‖w0‖2 + b‖B(w0, w0)‖2 ≤ ‖q0‖2. (38)

Setting τ0 > 0 such that

αeατ ≤ a

2
for all τ ∈ (0, τ0) (39)

we obtain considering w0 = u0 the estimate

‖ui‖2 ≤ ‖q0‖2 +
1
a

i∑
j=1

τeατ(2j−1)‖δqj + βqj‖2.

and the estimate (35) follows after using expression (36). 2

In order to obtain the uniform estimates of the differences we add the
restriction on the bounds of the right-hand sides of the equations (28), (29).

Lemma 3.3 Let q ∈ C1([0, T ], V ), α < a
2 . If

e−2αt‖q(0)‖2 +
1
a

∫ t

0
e−2α(t−s)‖q′(s) + βq(s)‖2ds <

1
b‖B‖2

, t ∈ [0, T ], (40)

then there exists a constant C2 not depending on τ > 0 such that

‖δwj‖ ≤ C2. i = 1, ..., N. (41)

Proof. After multiplying the equation (31) with δwj in the space V we
obtain

‖δwi‖2 + a((wi, δwi)) +
1
2
b‖δB(wi, wi)‖2 +

1
2
bτ((δB(wi, wi), B(δwi, δwi)) + ab(( B(wi, wi), B(wi, δwi) ))

= ((δqi + βqi), δwi)), (42)
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where we have used the relation

2B(wi, δwi) = δB(wi, wi) + τB(δwi, δwi).

The a priori estimate (35) and identity (42) further imply the inequality

‖δwi‖2 ≤ C1 +
1
4
b‖B(wi − wi−1, δwi)‖2, (43)

where the constant C1 depends only on the constants a, b and the function
q and its derivative.

Let us assume that

‖wi‖ <
1

b‖B‖2
, i = 1, ..., N. (44)

Comparing with the a priori estimate (35) we can see that for sufficiently
small τ > 0 the condition

e−2ατi‖q0‖2 +
1
a

i∑
j=1

τe−2ατ(i−j+1)‖δqj + βqj‖2 <
1

b‖B‖2
, i = 1, ..., N (45)

is sufficient for estimate (44) to be satisfied.
Assuming q ∈ C1([0, T ], V ) we obtain τ0 > 0 such that for τ < τ0 the

bounds (44) hold.
Comparing with (42), (44) we obtain from (40) the a priori estimate (41)

which completes the proof. 2.

We can now formulate the existence and uniqueness theorem.

Theorem 3.4 Let q ∈ C1([0, T ];V ) be such that condition (40) is satisfied
with α < a

2 . Then there exists a unique solution w ∈ W 1,∞(0, T ;V ) of the
initial value problem (28), (29).

There exists a subsequence of a sequence {wn} of segment line functions
defined by discrete values wi fulfilling the equations (30), (31) such that a
weak-star convergence (47) holds.

Proof. Let us set for n = 1, 2, ...

N ≡ N(n), τ ≡ τn =
T

N(n)
, lim

n→∞
N(n) = ∞.

We define the following functions determined by discrete values wi ≡
wn

i , δwi ≡ δwn
i :

wn : [0, T ] → V, wn(t) = wn
i−1 + (t− tni−1)δw

n
i , tni−1 ≤ t ≤ tni ,

w̄n : [0, T ] → V, w̄n(0) = w0, w̄n(t) = wi, tni−1 < t ≤ tni ,

tni = iτn, i = 0, 1, ..., N(n).
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From the previous a priori estimates we know that the sequence of functions
{wn} is bounded in the Sobolev space W 1,∞(0, T ;V ) :

‖wn‖W 1,∞(0,T ;V ) ≤ C3, n = 1, 2, ... . (46)

Then there exists a subsequence (again denoted by {wn}) and a function
w ∈ W 1,∞(0, T ;V ) such that

wn ⇀∗ w in W 1,∞(0, T ;V ), (47)
wn(t) ⇀ w(t), w̄n(t) ⇀ w(t) in V for every t ∈ [0, T ], (48)

wn ⇀∗ w, w̄n ⇀∗ w, w′n ⇀∗ w′ in L∞(0, T ;V ), (49)
wn → w, w̄n → w in Lp(0, T ;W r,1(Ω)), p > 1, r > 1. (50)

The Aubin-Lions lemma ([14]) was used in (50).
If we set B(wi, wi) = Ui, i = 0, 1, ..., n we obtain also the existence

of U ∈ W 1,∞(0, T ;V ) such that

Un ⇀∗ U in W 1,∞(0, T ;V ), (51)
Un(t) ⇀ U(t), Ūn(t) ⇀ U(t) in V for every t ∈ [0, T ], (52)

Un ⇀∗ U, Ūn ⇀∗ U, U ′
n ⇀∗ U ′ in L∞(0, T ;V ). (53)

Using the properties of the bilinear operator B : V × V → V we obtain
that

U(t) = B(w(t), w(t)). (54)

Let us express the discrete equations (30), (31) in a differential form

w′n(t) + aw̄n(t) + bB(U ′
n(t) + aŪn(t), w̄n(t))

= q′n(t) + βq̄n(t) for a.e. t ∈ (0, T ] (55)

wn(0) + bB(B(wn(0), wn(0)), wn(0)) = qn(0), (56)

We now verify that the limiting function w ∈ W 1,∞(0, T ;V ) is a solution
of the initial value problem (28), (29). We have directly from the definition
of w0 ∈ V in (30) that

wn(0) = w0 = w(0) for every n = 1, 2, ...

and the initial condition (29) is fulfilled.
Let v ∈ L2(0, T ;V ) be an arbitrary test function. The regularity q ∈

C1([0, T ], V ) and the convergence (47), (49) imply∫ T
0 (( q′n(t) + βq̄n(t), v(t) ))dt →

∫ T
0 (( q′(t) + βq(t), v(t) ))dt, (57)∫ T

0 (( w′n(t) + aw̄n(t), v(t) ))dt →
∫ T
0 (( w′(t) + aw(t), v(t) ))dt. (58)

12



Applying relations (5), (6) we have

((B(u, w), v)) =
∫
Ω
[u, v]wdx ∀ u, v, w ∈ V (59)

and ∫ T

0

∫
Ω
[(U ′

n(t) + aŪn(t), v(t)]w̄n(t)dxdt →∫ T

0

∫
Ω
[(U ′(t) + aU(t), v(t)]w(t)dxdt, (60)

where we applied the convergence (48), (51) and the fact that

[u,w] ∈ L1(0, T ;L1(Ω)) for all u, w ∈ L2(0, T ;V ).

Considering the convergences (57), (58), (60) we arrive at the integral
identity ∫ T

0
(( w′(t) + aw(t), v(t) ))dt +∫ T

0
(( bB(B(w(t), w(t))′ + aB(w(t), w(t)), w(t)), v(t) ))dt =∫ T

0
(( q′(t) + βq(t), v(t) )) for all v ∈ L2(0, T ;V ),

which implies together with (56) that w is a solution of the initial value
problem (28), (29). If α < a

2 , then there exists τ0 such that for τ ∈ (0, τ0)
the condition (39) holds. Together with the bound (40) for the function q
and its derivative all the conditions for the a priori estimates obtained above
are fulfilled. We have there derived the solution w ∈ W 1,∞(0, T ;V ) of the
problem (28), (29) as the limit of the sequences of segment line and step size
functions defined in (47)-(50).

It remains to verify the uniqueness. We derive it even in the case that
the bounds (40) is fulfilled only for the initial point t = 0:

‖q(0)‖ <
1√

b‖B‖
. (61)

Let wi ∈ W 1,∞(0, T ;V ), i = 1, 2 be solutions of the initial value problem
(28), (29). We deduce from Theorem 2.1 and from (61) the uniqueness of a
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solution of the stationary equation (28). The difference w = w1 − w2 then
fulfils the homogeneous initial value problem

w′(t) + aw(t) + bB(B(w1, w1)′ + aB(w1, w1), w1)(t) (62)
−bB(B(w2, w2)′ + aB(w2, w2), w2)(t) = 0,

w(0) + bB(B(w(0), w(0)), w(0)) = 0. (63)

After multiplying with w in the space V and integrating we obtain the
identity

‖w(t)‖2 + a

∫ t

0
‖w(s)‖2ds = (64)

b

∫ t

0
((B(B(w2, w2)′, w2)− (B(B(w1, w1)′, w1), w))ds +

ba

∫ t

0
((B(B(w2, w2), w2)− (B(B(w1, w1), w1), w))ds.

Let us set wξ = w2 + ξw, ξ ∈ R . We can then express the functions
in the integrals on the right-hand side of (64) as following integrals

((B(B(w2, w2)′, w2)− (B(B(w1, w1)′, w1), w)) =

−
∫ 1

0
[(( B(wξ, wξ)′, B(w,w) )) + (( B(w,wξ)′, B(wξ, w) ))]dξ,

((B(B(w2, w2), w2)− (B(B(w1, w1), w1), w)) =

−
∫ 1

0
[(( B(wξ, wξ), B(w,w) )) + 2‖B(wξ, w)‖2]dξ.

Using the fact that functions wi, i = 1, 2 belong to the space W 1,∞(0, T ;V )
and the same holds for wξ we obtain from (64) the estimate

‖w(t)‖2 ≤ C4

∫ t

0
‖w(s)‖2ds

with the constant C4 depending only on the a, b, ‖B‖ and the right-hand
side q′ + βq. The Gronwall lemma implies w(t) = 0, t ∈ [0, T ] and the
uniqueness of a solution follows. 2

After coming back to the original problem for a couple {w,Φ} of the
deflection and the Airy stress function we obtain

Theorem 3.5 Let f ∈ C1([0, T ];V ∗) satisfy the inequality

e−2αt‖f(0)‖2
∗ +

1
a

∫ t

0
e−2α(t−s)‖f ′(s) + βf(s)‖2

∗ds <
D2

0

b‖B‖2
, t ∈ [0, T ] (65)
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with an arbitrary α ∈ (0, a
2 ).

Then there exists a couple {w,Φ} ∈ W 1,∞(0, T ;V ) × L∞(0, T ;V ) being
a unique weak solution of the problem (20)-(24).

Remark 3.6 Condition (65) can be interpreted as a bound on the data. The
exponential character of conditions (40) and (65) implies that the bounds for
the right hand sides q, q′ or f, f ′ do not depend on the length T of the time
interval. We remember the relations

2α < a =
βD0

D0 + D1
< β.

In the case of constant functions f and hence also q we have then the fol-
lowing sufficient bounds for the existence and uniqueness of a solution :

‖q‖ <
a√

bβ‖B‖
(66)

and
‖f‖∗ <

D0√
b‖B‖

. (67)

Remark 3.7 Applying the Rothe’s method to a weak formulation of the
problem (20)-(24) means that we obtain the stationary von Kármán system
at each time level. A solution is a minimizer of the functional defined in
(34). We can use some of the gradient algorithms ([13]) combined with cubic
finite elements in order to solve the corresponding minimum problem.

Another possibility is to use the mixed formulation of the stationary prob-
lem due to Miyoshi [15] or [11], [17]. A weak formulation of the problem is
converted into the problem involving 8 unknown functions with at most 2-nd
order derivatives and using linear finite elements.

4 The Behaviour of a Solution for t →∞
Let us assume that

q(t) → q∞, q′(t) → 0 in V for t →∞.

It can be easily verified that in the linear case

w′(t) + aw(t) = q′(t) + βq(t), w(0) = q(0)
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the relation
lim
t→∞

w(t) =
β

a
q∞ = w∞

holds with a weak solution w∞ of the elastic problem

D0∆2w∞ = f∞ in Ω, w =
∂w

∂ν
= 0 on Γ.

This behaviour holds also in the nonlinear case if the right-hand side of
the equation (28) fulfils the bound (40) and its limit value q∞ satisfies an
estimate stronger than in (66).

Theorem 4.1 Let q ∈ C1([0,∞);V ) fulfil the condition (40) with α < a
2

and
lim
t→∞

q(t) = q∞, lim
t→∞

q′(t) → 0 in V. (68)

If
‖q∞‖ <

a

3
√

2bβ‖B‖
, (69)

then
lim
t→∞

w(t) = w∞, (70)

where w : [0,∞) → V is a solution of the initial value problem (28), (29)
and w∞ ∈ V fulfils the stationary equation

aw∞ + abB(B(w∞, w∞), w∞) = βq∞. (71)

Proof. The assumption (69) implies that the right-hand side q∞ of the
stationary von Kármán equation (71) fulfils the estimate

‖q∞‖ <
a√

bβ‖B‖
(72)

Comparing with Theorem 2.1 we can see that there exists a unique solution
w∞ ∈ V of the equation (71). Let us set

u(t) = w(t)− w∞, r(t) = q′(t) + βq(t)− βq∞, t ≥ 0. (73)

The function u ∈ W 1,∞(0, T ;V ) is for every T > 0 a solution of the initial
value problem

u′(t) + au(t) + bB(B(w,w)′, w)(t) + (74)
ab[B(w,w), w)(t)−B(B(w∞, w∞), w∞)] = r(t),
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u(0) = u0 ∈ V. (75)

Let us set
wξ = (1− ξ)w∞ + ξw = w + (ξ − 1)u, ξ ∈ R.

We shall use in our further considerations the following relations:

((B(B(w,w), w)−B(B(w∞, w∞), w∞), u)) =∫ 1
0 [ (( B(wξ, wξ), B(u, u) )) + 2‖B(wξ, u)‖2 ]dξ =

1
3(( B(w,w) + B(w,w∞) + B(w∞, w∞), B(u, u) )) + (76)
2‖B(w, u)‖2 − 2(( B(w, u), B(u, u) )) + 2

3‖B(w,w)‖2.

After multiplying the equation (74) we obtain considering (76) the relation

((u′, u)) + a‖u‖2 + 2b(( B(w′, w), B(w, u) ))
+2ab[‖B(w, u)‖2 − (( B(w, u), B(u, u) )) + 1

3‖B(u, u)‖2] (77)
+1

3ab(( B(w,w) + B(w,w∞) + B(w∞, w∞), B(u, u) ))
= (( r(t), u(t) )).

Further, we mention the relation

2(( B(w′, w), B(w, u) )) =
d

dt
‖B(w, u)‖2 − 2( B(w′, u), B(w, u) )). (78)

We arrive then from (77) at the inequalities

d
dt [‖u‖

2 + 2b‖B(w, u)‖2] + a
2 [‖u‖2 + 2b‖B(w, u)‖2]

+2
3ab(( B(w,w) + B(w,w∞) + B(w∞, w∞), B(u, u) )) ≤

4b(( B(w′, u), B(w, u) )) + 2(( r(t), u(t) ))

and

d
dt [‖u‖

2 + 2b‖B(w, u)‖2] + a
2 [‖u‖2 + 2b‖B(w, u)‖2] ≤

b‖B‖2[4‖w′‖‖w‖+ 2
3a(‖w‖2 + ‖w‖‖w∞‖+ ‖w∞‖2)]‖u‖2

+2(( r(t), u(t) )), t > 0. (79)

We need the estimates of w, w∞ and w′ in order to derive the conditions
for the limit behaviour of u.

We have from (71) the estimate

‖w∞‖ ≤
β

a
‖q∞‖. (80)
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Directly from the initial value problem (28), (29) we have the relations

d
dt(‖w‖

2 + b‖B(w,w)‖2)(t) + 2a‖w(t)‖2 + b‖B(w,w)(t)‖2

= 2(( q′(t) + βq(t), w(t) )), t > 0,

‖w(t)‖2 + b‖B(w,w)(t)‖2 ≤
e−at‖q(0)‖2 + 1

ae−at
∫ t
0 eas‖q′(s) + βq(s)‖2ds, for each t > 0,

‖w′(t)‖2 ≤ 2a2(‖w‖2 + b‖B(w,w)‖2)(t) + 2‖q′(t) + βq(t)‖2 for a.e. t > 0.

Assuming the limits of the right-hand side in (68) we obtain for an
arbitrary ε > 0 the existence of T > 0 such that there hold the estimates

‖w(t)‖ ≤ β

a
‖q∞‖ + ε for each t > T, (81)

‖w′(t)‖ ≤ 2β‖q∞‖ + ε for a.e. t > T. (82)

Implying the estimates (80), (81), (82) in the inequality (79) we obtain that
the condition (69) enables the existence of constants c ∈ (0, a

2 ), d > 0 and
t0 > 0 such that

d
dt [‖u‖

2 + 2b‖B(w, u)‖2] + c[‖u‖2 + 2b‖B(w, u)‖2]
≤ d‖r(t)‖2, for every t > t0. (83)

The estimate

‖u‖2 ≤ [‖u0‖2 + 2b‖B(w0, u0)‖2]e−ct +
∫ t

0
e−c(t−s)‖r(s)‖2ds

then implies the limit (70) which concludes the proof. 2
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